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Abstract The paper extends the analysis of price competition among capacity-constrained

sellers beyond the cases of duopoly and symmetric oligopoly. We first provide some

general results for the oligopoly, highlighting features of a duopolistic mixed strat-

egy equilibrium that generalize to oligopoly. Unlike in the duopoly, however, there

can be infinitely many equilibria when the capacity of a subset of firms is so large

that no strategic interaction among smaller firms exists. Then we focus on the tri-

opoly, providing a complete characterization of the mixed strategy equilibrium of the

Bertrand-Edgeworth game. The mixed-strategy region of the capacity space is parti-

tioned according to key equilibrium features. We also prove the possibility of a discon-

nected support of an equilibrium strategy and show how gaps are then determined.

Computing the mixed strategy equilibrium then becomes quite a simple task.
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1 Introduction

The issue of price competition among capacity-constrained sellers has attracted con-

siderable interest since Levitan and Shubik’s [13] modern reappraisal of Bertrand and

Edgeworth. Assume a given number of firms producing a homogeneous good at con-

stant and identical unit variable cost up to some fixed capacity. Assume, also, a non-

increasing and concave demand and that rationing takes place according to the surplus

maximizing rule. Then there are a few well-established facts about equilibrium of the

price game. First, at any pure strategy equilibrium the firms earn competitive profit.

However, a pure strategy equilibrium need not exist unless the capacity of the largest

firm is small enough compared to total capacity. When a pure strategy equilibrium

does not exist, existence of a mixed strategy equilibrium is guaranteed by Theorem 5

of [3] for discontinuous games.

Under the above assumptions on demand and cost, a mixed strategy equilibrium

was characterized by Kreps and Scheinkman [12] for the duopoly within a two-stage

capacity and price game. This model was subsequently extended to allow for non-

concavity of demand (by Osborne and Pitchik, [15]) or differences in unit cost among

the duopolists (by Deneckere and Kovenock, [9]). This led to the discovering of new

phenomena, such as the possibility of the supports of the equilibrium strategies being

disconnected and non-identical for the duopolists.

Yet there is still much to be learned about mixed strategy equilibria under oligopoly,

even with constant and identical unit cost and concave demand, where a complete char-

acterization of the mixed strategy equilibrium is available only for some special cases.

Vives [17], amongst others, analyzed the case of equal capacities among all firms.

Within an analysis concerning horizontal merging of firms Davidson and Deneckere

[4] provided the complete analysis (apart for the fact that attention is restricted to

equilibria in which strategies of equally-sized firms are symmetrical) of a Bertrand-

Edgeworth game with linear demand, equally-sized small firms and one large firm with

a capacity that is a multiple of small firm’s capacity.1 More recently Hirata [11] pro-

vided an extensive analysis of triopoly with concave demand and efficient rationing:

having highlighted the basic features of mixed strategy equilibria under triopoly, he

was able to analyze how mergers between two firms would affect profitability in the

different circumstances. Our analysis of the triopoly differs in scope from Hirata’s since

we provide a complete characterization of mixed strategy equilibria in the triopoly: we

reveal all qualitative features possibly arising in the triopoly, including the facts high-

lighted in [11].2 In a still unpublished paper Ubeda [16] has compared discriminatory

and uniform auctions and obtained a number of novel results on discriminatory auc-

tions, a context equivalent to a Bertrand-Edgeworth game. Differences between our

contribution and those of Hirata and Ubeda are further clarified below.

1 Davidson and Deneckere [4] assumed a given number of equally-sized firms some of which
merge. To see whether merger facilitates collusion in a repeated price game, they had to
characterize equilibria of the static price game for the resulting special asymmetric oligopoly
and hence mixed strategy equilibria when the new capacity configuration falls in the mixed
strategy region of the capacity space. Our study shows that the equilibrium strategies of smaller
firms may indeed be indeterminate (though each firm equilibrium payoff is the same at any
equilibrium). Davidson and Deneckere avoided this problem by restricting their attention to
equilibria that treat small firms symmetrically ([4], footnote 10, p. 123).

2 Our own research and Hirata’s were conducted independently. (Results were made publicly
available, in [7] and [10], respectively.)
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These references make it clear that the issue at hand is relevant in many respects,

such as mergers (hence regulation), auctions, and price leadership.3 In contrast, a

characterization of payoffs of all firms at a mixed strategy equilibrium of the price

game does not seem to be needed to solve an oligopolistic two-stage capacity and price

game, at least under Kreps and Scheinkman’s assumptions of convex cost of capacity,

concavity of demand, and efficient rationing. In fact, it has recently been shown (see

[2] and [14]) that the Cournot outcome then extends to oligopoly. This result basically

derives from a fundamental property of mixed strategy equilibria, namely, the fact that

the payoff of (any of) the largest firm is what is earned by the Stackelberg follower

when rivals supply their capacity.4

As explained above, our ultimate goal was to deepen our understanding of mixed

strategy equilibria under oligopoly and this paper provides a number of results in

this connection. However, as soon as mixed strategy equilibria turned out to have

different qualitative features depending upon the firms’ capacities, it occurred to us

that a taxonomy was required in order to completely characterize such equilibria. This

seemed hard to manage under general oligopoly and so we turned to the triopoly, to

simplify the task and in the confidence of getting insights for subsequent generalizations

to oligopoly. This research has led to several discoveries. Unlike in the duopoly, the

equilibrium strategies need not have identical supports for all the firms: the maximum

and minimum of the supports need not be the same for all the firms5 and supports

need not be connected (although their union is). A further difference from the duopoly

is that there can be infinitely many equilibria.

The paper is organized as follows. Section 2 contains definitions and the basic

assumptions of the model along with a few basic results on equilibrium payoffs in

oligopoly and a key Lemma. Section 3 is concerned with mixed strategy equilibria

under oligopoly. Several features of a duopolistic mixed strategy equilibrium turn out

to generalize to oligopoly: determination of the upper and lower bounds of the support

of the equilibrium strategy of (any of) the largest firm; determination of the equilibrium

payoff of the second-largest firm; the necessary symmetry of equilibrium strategies for

equally sized firms (so long as the equilibrium is fully determined); the absence of atoms

in equilibrium strategies, apart from the upper bound of the support of the largest firm,

which it charges with positive probability when its capacity is strictly higher than for

any other firm. Unlike in the duopoly, however, there can be infinitely many equilibria.

Roughly speaking, this feature can arise when total capacity and the share of it held by

a subset of firms are so large 6 that no strategic interaction exists among smaller firms:

what is sold by any of them at some price only depends on prices set by firm(s) with

larger capacities. In such a case, we show that there is a single equation constraining

the equilibrium strategies of smaller firms.

3 The relevance of mixed strategy equilibria of price games for the analysis of mergers might
also be viewed in a longer-run perspective, by allowing for capacity decisions by the merged
firm and outsiders (on this, see Baik [1]). Characterizing mixed strategy equilibrium of the
price game in a duopoly allows Deneckere and Kovenock [8] to endogenize price leadership by
the dominant firm when the capacity vector lies in the mixed strategy region.

4 Hence, at any capacity configuration giving rise to a mixed strategy equilibrium of the
price subgame, the largest firm has not made a best capacity response: it would raise profit
by reducing capacity. Having ruled out any such capacity configuration, the Cournot outcome
follows straightforwardly.

5 That minima may differ has also been recognized in [10] and [11].
6 In [11], as well as in the earlier version [7] of this paper, indeterminateness was only

discovered for the case in which the largest firm’s capacity is higher than total demand.
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Sections 4 to 6 are devoted to the triopoly. In Section 4 the region of the capac-

ity space involving a mixed strategy equilibrium is partitioned into several subsets

according to the features of the resulting equilibrium. This leads to a classification the-

orem which characterizes the firms’ payoffs and bounds the supports of the equilibrium

strategies throughout the region of mixed strategy equilibria. Quite interestingly, there

are circumstances where the smallest firm gets a higher payoff per unit of capacity

than the larger ones’.7 Section 5 introduces the theoretical possibility of the support of

the equilibrium strategy being disconnected for some firms. More specifically, we clarify

when there is necessarily a gap in the support between the minimum and the maximum

and how the gap is then determined. Having done this, we are able to complement our

classification theorem with a uniqueness theorem: either the equilibrium is unique or

not fully determined, and we identify the two complementary subsets of the region

of mixed strategy equilibria where the former and the latter hold true, respectively.8

The event of a gap in some support is established in Section 6. Here we construct the

mixed strategy equilibrium in the set where the supports of equilibrium strategies have

the same bounds for all the firms. That set is, in turn, partitioned into two subsets

according to the nature of the equilibrium: in one, the supports are connected for all

the firms; in the other, there is a gap in the support of the smallest firm. To show that

gaps are a more general phenomenon, in Section 6 we also look elsewhere in the region

of mixed strategy equilibria and provide an example with a gap in the support of the

equilibrium strategy of the intermediate-size firm. Section 7 briefly concludes.

2 Preliminaries

There are n firms, 1, 2, ..., n, producing a homogeneous good at the same constant

unit cost (normalized to zero), up to capacity. The demand function D(x) is defined

for p > 0, continuous, and decreasing and concave when positive. We define P (x) as

the inverse function D−1(x) for x ∈ [0, D(0)) and P (x) = 0 for x > D(0).9 Without

loss of generality, we consider the subset of the capacity space (K1,K2, ...,Kn) where

K1 > K2 > ... > Kn, and we define K = K1 + ...+Kn.

It is assumed throughout that any rationing is according to the efficient rule. Conse-

quently, let Ω(p) be the set of firms charging price p: the residual demand forthcoming

to all firms in Ω(p) is max
n

0, D(p)−
P
j:pj<p

Kj

o
= Y (p). If

P
i∈Ω(p)Ki > Y (p),

the residual demand forthcoming to any firm i ∈ Ω(p) is a fraction αi(Ω(p), Y (p))

of Y (p), namely, Di(p1, ..., pn) = αi(Ω(p), Y (p))Y (p). Our analysis does not depend

on the specific assumption being made on αi(Ω(p), Y (p)): for example, it is consistent

with αi(Ω(p), Y (p)) = Ki/
P
r∈Ω(p)Kr as well as with the assumption that residual

demand is shared evenly, apart from capacity constraints, among firms in Ω(p).10

7 This fact was also discovered by [11]. Besides, we are able to compute that firm’s payoff,
even in those circumstances.

8 Uniqueness of the mixed strategy equilibrium of the price game with fixed capacities was
proved, for the duopoly, by Osborne and Pitchik [15].

9 A similar definition of function P (x) can be found in Davidson and Deneckere [5].
10 In this case, αi(Ω(p), Y (p)) = min{Ki/Y (p), β(p)} where β(p) is the solution in α of

equation
P
i∈Ω(p) min{Ki/Y (p), α} = 1. Let M ∈ Ω(p) and KM > Ki (each i ∈ Ω(p)).

Then
P
i∈Ω(p) min{Ki/Y (p), α} is increasing in α over the range [0,KM/Y (p)] and equal toP

i∈Ω(p)Ki/Y (p) > 1 for α = KM/Y (p).
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At any given pure strategy profile, let p = max{p1, ..., pn}. Let pc be the competitive

price, that is,

pc =


P (K) if D(0) > K

0 if D(0) 6 K.

We now provide necessary and sufficient conditions for the existence of a pure strategy

equilibrium and show that no pure-strategy equilibrium actually exists when the com-

petitive price is not an equilibrium. These results are straightforward generalizations

of similar results for the duopoly.

Proposition 1 (i) (p1, ..., pn) = (pc, ..., pc) is an equilibrium if and only if either

K −K1 > D(0), if D(0) 6 K, (1)

or

K1 6 −pc
ˆ
D′(p)

˜
p=pc

, if D(0) > K. (2)

(ii) All firms earn the competitive profit at each pure strategy equilibrium and (pc, ..., pc)

is the unique equilibrium if D(0) > K.

Proof (i) If K > D(0), charging pc = 0 is a best response of firm i to rivals charging pc

if and only if
P
j 6=iKj > D(0). This holds for each i if and only if

P
j 6=1Kj > D(0).

If D(0) > K, charging pc is the best response of firm i to rivals charging pc if and

only if
h
d[p(D(p)−

P
j 6=iKj)]/dp

i
p=pc

6 0. This holds for each i if and only if K1 6

−pc
ˆ
D′(p)

˜
p=pc

.

(ii) We must scrutinize strategy profiles such that p > pc. Assume first D(p) −P
j:pj<p

Kj > 0. If #Ω(p) > 1, then at least some firm i ∈ Ω(p) has a resid-

ual demand lower than Ki and would raise profits by deviating to a price negligibly

lower than p, since output would jump up, from [D(p)−
P
j:pj<p

Kj ]αi(Ω(p), Y (p)) to

min
n
Ki, D(p− ε)−

P
j:pj<p

Kj

o
. If #Ω(p) < n, any firm j /∈ Ω(p) is selling its entire

capacity and therefore has not made a best response: it would still sell its capacity by

raising the price, provided it remains lower than p. Next assumeD(p)−
P
j:pj<p

Kj 6 0.

In order for any firm charging more than the lowest price p to have made a best re-

sponse, it must be p = 0 and
P
j:pj=0Kj > D(0) (the latter of course requiring that

K > D(0)): note that all firms are here earning the competitive profit (zero). But

then, in order for each firm j charging p to have also made a best response, it must beP
s:ps=0,s6=j Ks > D(0). ut

Therefore, equilibria with p > pc may only exist if inequalities (1) hold, the set

of equilibria then being any strategy profile such that
P
s:ps=0,s6=j Ks > D(0) for

each j such that pj = 0; if inequalities (2) hold, then a unique equilibrium exists,

in which all firms charge the competitive price pc > 0; if neither (1) nor (2) holds,

then no pure strategy equilibrium exists. As a consequence, the existence of a pure

strategy equilibrium depends upon the capacity of the largest firm to be sufficiently

small compared to total capacity. In fact, either (1) or (2) holds if and only if K1 6
max{K −D(0),−pc

ˆ
D′(p)

˜
p=pc

}. It is assumed in the following that K1 > max{K −
D(0),−pc

ˆ
D′(p)

˜
p=pc

}, so that we are in the region of mixed strategy equilibria.
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We henceforth denote by (φ1(p), ..., φn(p)) = (φi(p), φ−i(p)) a profile of strate-

gies at a mixed strategy equilibrium, where φi(p) = Pr(pi < p) is the probability of

firm i charging less than p. For the sake of brevity, we denote by Π∗i (rather than by

Π∗i (φi(p), φ−i(p)) firm i’s expected profit at equilibrium strategy profile (φi(p), φ−i(p)),
and by Πi(p) firm i’s expected profit when it charges p with certainty and the rivals are

playing the equilibrium profile of strategies φ−i(p).
11 Further, Si is the support of φi(p),

and p
(i)
M and p

(i)
m are the maximum and minimum of Si, respectively. More specifically,

we say that p ∈ Si when φi(·) is increasing at p, that is, when φi(p + h) > φi(p − h)

for any 0 < h < p, whereas p /∈ Si if φi(p + h) = φi(p − h) for some h > 0.12

Of course, any φi(p) is non-decreasing and everywhere continuous except at p◦ such

that Pr(pi = p◦) > 0, where it is left-continuous (limp→p◦− φi(p) = φi(p
◦)), but

not continuous. Let pM = maxi p
(i)
M and pm = mini p

(i)
m , M = {i : p

(i)
M = pM} and

L = {i : p
(i)
m = pm}. Moreover, if #M < n, then we define bpM = maxi/∈M p

(i)
M .

Similarly, if #L < n, then we define bpm = mini/∈L p
(i)
m .

Obviously, Π∗i > Πi(p) everywhere and Π∗i = Πi(p) almost everywhere in Si.

Some more notation is needed to investigate further the properties of Πi(p). Let N =

{1, ..., n} be the set of firms, N−i = N − {i}, and P(N−i) = {ψ} be the power set of

N−i. Further, let

Zi(p;φ−i) := p
X

ψ∈P(N−i)

qi,ψ
Y
r∈ψ

φr
Y

s∈N−i−ψ
(1− φs), (3)

where φi ∈ [0, 1] are real numbers and qi,ψ = max{0,min{D(p) −
P
r∈ψKr,Ki}} is

firm i’s output when any firm r ∈ ψ charges less than p and any firm s ∈ N−i − ψ
charges more than p.13 Function Zi(p;φ−i) allows firm i’s payoff function Πi(p) to be

decomposed into functions {p, φ−i(p)}, so long as firm i’s rivals’ equilibrium strategies

φ−i(p) are all continuous in p: namely, Πi(p) = Zi(p;φ−i(p)). If instead Pr(pj =

p◦) > 0 for some j 6= i, then Zi(p
◦;φ−i(p

◦)) > Πi(p
◦) > limp→p◦+ Zi(p;φ−i(p)).

14

Sometimes we factorize φj and (1− φj) in equation (3) to obtain

Zi(p;φ−i) = Zi(p;φ−i−j , φj) = φjZi(p;φ−i−j , 1) + (1− φj)Zi(p;φ−i−j , 0).

Zi(p;φ−i−j , 1) and Zi(p;φ−i−j , 0)) have a clear interpretation: if φr = φr(p) (each

r 6= i, j), then Zi(p;φ−i−j , 1) and Zi(p;φ−i−j , 0)) are firm i’s expected payoffs when

charging p, conditional on pj < p and pj > p, respectively. We establish some properties

of functions Zi(p;φ−i) which will be useful later on.

Lemma 1 (i) Zi(p;φ−i) is continuous in p. For every p and every φ−i there

exists ε > 0 such that Zi(p;φ−i) is concave in p in the intervals [p, p+ ε] and [p− ε, p]:
as a consequence, Zi(p;φ−i) is locally concave in p whenever it is differentiable in p.

Wherever Zi(p;φ−i) is concave in p but not strictly so, there is a function h(φ−i),

0 6 h(φ−i) 6 1, such that Zi(p;φ−i) = h(φ−i)pKi.
15

11 In principle the vector of equilibrium payoffs need not be unique if the equilibrium strategy
profile is not so.
12 Note that φi(p) = 0 in a right neighborhood of zero.
13 Note that

Q
r∈ψ φr is the empty product, hence equal to 1, when ψ = ∅; and it is similarlyQ

s∈N−i−ψ(1− φs) = 1 when ψ = N−i.
14 The exact value of Πi(p

◦) when Pr(pj = p◦) > 0 for some j 6= i depends on function
αi(Ω(p), Y (p)).
15 If φ−i = φ−i(p◦), then h(φ−i) is the probability that the residual demand for firm i is not

lower than Ki when firm i charges p◦ and the rivals are playing φ−i(p◦).
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(ii) For given φ−i and for any ψ ∈ P(N−i), Zi(p;φ−i) is kinked at p = P (
P
r∈ψKr)

and locally convex there if
Q
r∈ψ φr

Q
s∈N−i−ψ(1− φs) > 0.

(iii) Zi(p;φ−i) is continuous and differentiable in φj (each j 6= i) and ∂Zi/∂φj 6
0. More precisely, ∂Zi/∂φj < 0if and only if there exists some ψ ∈ P(N−i−j) such

that16 Y
s∈ψ

φs
Y

t∈N−i−j−ψ
(1− φt) > 0 (4)

and

0 < D(p)−
X
h∈ψ

Kh < Ki +Kj . (5)

(iv) ∂Zi/∂φj < 0 if and only if ∂Zj/∂φi < 0.

(v) If ∂Zi/∂φj < 0, then ∂Zi/∂φr < 0 for any r < j.

(vi) If ∂Zi/∂φj = 0, then there is function G(φ−i−j) such that Zi(p;φ−i) =

G(φ−i−j)pKi and Zj(p;φ−j) = G(φ−i−j)pKj .

(vii) Let Ñ = {i ∈ N : ∂Zj/∂φi < 0 ∀j ∈ N} and ˜̃N = N − Ñ . Similarly,

φ̃ = {φi : i ∈ Ñ} and
˜̃
φ = {φi : i ∈ ˜̃N}. Assume that ˜̃N is not empty. Then, for

each r ∈ Ñ , Zr(p;φ−r) = Qr(p; φ̃−r) − pRr(φ̃−r)
P
s∈ ˜̃N

φsKs where Qr(p; φ̃−r) :=

p
P
ψ∈P(Ñ−r)

qr,ψ
Q
t∈ψ φt

Q
v∈Ñ−r−ψ(1− φv) and Rr(φ̃−r) :=

P
ψ∈P(Ñ−r),0<qr,ψ<Kr

Q
t∈ψ φt

Q
v∈Ñ−r−ψ(1− φv).

(viii) Assume 0 < φ1 < 1, 0 < φs < 1 for some s ∈ N−1, and P (
P
i6=1Ki) > p >

P (
P
i∈ΦKi) where Φ = {i ∈ N : φi > 0}. Then:

(a) ∂Z1/∂φi < 0 and ∂Zi/∂φ1 < 0 for any i ∈ N−1;

(b) if p < P (
Pr
h=1Kh) then ∂Zr+1/∂φi < 0 and ∂Zi/∂φr+1 < 0 for any i > r+1;

(c) if p > P (K1), ∂Zi/∂φj = 0 for any i ∈ N−1 and any j ∈ N−1−i.
(ix) If Ki = Kj and φi 6 φj , then Zi(p;φ−i) 6 Zj(p;φ−j) and Zi(p;φ−i) <

Zj(p;φ−j) whenever φi < φj and ∂Zi/∂φj < 0.

(x) If Ki < Kj and φi > φj = 0, then (Kj/Ki)Zi(p;φ−i) > Zj(p;φ−j).

Proof (i) Zi(p;φ−i) is a convex linear combination of functions which are concave in the

intervals [p, p+ε] and [p−ε, p] for any p and sufficiently small ε. If
Q
r∈ψ φr

Q
s∈N−i−ψ(1−

φs) > 0 at some ψ such that qi,ψ = D(p)−
P
r∈ψKr, then Zi(p;φ−i) is strictly concave;

if not, then
Q
r∈ψ φr

Q
s∈N−i−ψ(1−φs) > 0 only for ψ’s such that either qi,ψ = Ki or

qi,ψ = 0.

(ii) At p = P (
P
r∈ψKr), the left derivative of Zi(p;φ−i) with respect to p equals

the right derivative plus pD′(p)
Q
r∈ψ φr

Q
s∈N−i−ψ(1− φs) < 0.

(iii) Differentiate Zi(p;φ−i) with respect to φj and rearrange to obtain

∂Zi
∂φj

= Zi(p;φ−i−j , 1)− Zi(p;φ−i−j , 0) =

= p
X

ψ∈P(N−i−j)

(qi,ψ∪{j} − qi,ψ)
Y
r∈ψ

φr
Y

s∈N−i−j−ψ
(1− φs). (6)

Then, ∂Zi/∂φj 6 0 since qi,ψ∪{j}− qi,ψ 6 0. Clearly, ∂Zi/∂φj < 0 if and only if there

exists ψ ∈ P(N−i−j) such that inequality (4) holds and qi,ψ∪{j} − qi,ψ < 0, which

leads to inequalities (5).

(iv) It follows from the symmetrical role of i and j in inequalities (4) and (5).

16 By slightly extending notation, N−i−j = N − {i, j} and P(N−i−j) is its power set.
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(v) Recall that, in order for ∂Zi/∂φj < 0 (∂Zi/∂φr < 0), inequalities (4) and (5)

must hold for some ψ ∈ P(N−i−j) (resp., ψ′ ∈ P(N−i−r)). Suppose they hold for some

ψ such that r /∈ ψ. For ψ′ = ψ, inequalities (5) read 0 < D(p)−
P
h∈ψKh < Ki +Kr,

which hold too since the first inequality is unchanged and Kj 6 Kr; inequality (4)

holds if φj < 1. Suppose inequalities (4) and (5) hold for some ψ such that r ∈ ψ. For

ψ′ = ψ ∪ {j} − {r}, inequalities (5) read 0 < D(p) −
P
h∈ψ′ Kh < Ki + Kr, which

hold too since the second inequality is unchanged and Kj 6 Kr; inequality (4) holds

if φj > 0. Thus the claim is proved if φj ∈ (0, 1). Assume now that φj = 0. The claim

is still proved if some φ’s for which inequalities (4) and (5) are satisfied do not include

r. Assume the opposite, i.e., that all φ’s for which inequalities (4) and (5) are satisfied

include r; then Zi(p;φ−i) = φrZi(p;φ−i−r, 1) and ∂Zi/∂φr 6 0 only if Zi(p;φ−i) = 0.

Assume now that φj = 1 and all φ’s for which inequalities (4) and (5) are satisfied do

not include r, then Zi(p;φ−i) = (1− φr)Zi(p;φ−i−r, 0) and ∂Zi/∂φr < 0.

(vi) For each ψ ⊆ N−i−j it is either qi,ψ∪{j} = qi,ψ = 0 or qi,ψ∪{j} = qi,ψ =

Ki or
Q
r∈ψ φr

Q
s∈N−i−j−ψ(1 − φs) = 0. Hence in all positive addends of sum (3)

qi,ψ = Ki. Thus there is a function Gi(φ−i−j) such that Zi(p;φ−i) = Gi(φ−i−j)pKi.
Similarly, taking account of part (iv), we obtain Zj(p;φ−j) = Gj(φ−i−j)pKj . Finally,

Gi(φ−i−j) < Gj(φ−i−j) if and only if qi,ψ = 0 and qj,ψ = Kj for some ψ ⊆ N−i−j , i.e.,

Kj 6 D(p)−
P
r∈ψKr 6 0. This contradiction implies that Gi(φ−i−j) = Gj(φ−i−j).

(vii) Let ψ ∈ P(Ñ−r) and ψ′ ∈ P( ˜̃N). It is easily checked that if qr,ψ = Kr,

then also qr,ψ∪ψ′ = Kr. Otherwise there are i, j ∈ ψ′ such that ∂Zi/∂φj < 0 since

qi,ψ∪ψ′∪{r} − qi,ψ∪ψ′∪{r}−{j} < 0. Similarly, if 0 < qr,ψ < Kr, then qr,ψ∪ψ′ = qr,ψ −P
s∈ψ′ Ks > 0. As a consequence, Zr(p;φ−r) = p

P
ψ∈P(Ñ−r),qr,ψ=Kr

P
ψ′∈P( ˜̃N)

Kr
Q
t∈ψ φt

Q
u∈ψ′ φu

Q
v∈N−r−ψ−ψ′(1−

φv)+p
P
ψ∈P(Ñ−r),0<qr,ψ<Kr

P
ψ′∈P( ˜̃N)

h
qr,ψ −

P
s∈ψ′ Ks

iQ
t∈ψ φt

Q
u∈ψ′ φu

Q
v∈N−r−ψ−ψ′(1−

φv) = p
P
ψ∈P(Ñ−r)

qr,ψ
Q
t∈ψ φt

Q
v∈Ñ−r−ψ(1−φv)

»P
ψ′∈P( ˜̃N)

Q
u∈ψ′ φu

Q
v∈ ˜̃N−ψ′

(1− φv)

–
−

p
P
ψ∈P(Ñ−r),0<qr,ψ<Kr

Q
t∈ψ φt

Q
v∈Ñ−r−ψ(1−φv)

»P
ψ′∈P( ˜̃N)

P
s∈ψ′ Ks

Q
u∈ψ′ φu

Q
v∈ ˜̃N−ψ′

(1− φv)

–
=

Qr(p; φ̃−r)−pRr(φ̃−r)
P
s∈ ˜̃N

φsKs

»P
ψ′∈P( ˜̃N)−P( ˜̃N−s)

Q
u∈ψ′−{s} φu

Q
v∈ ˜̃N−ψ′

(1− φv)

–
=

Qr(p; φ̃−r)− pRr(φ̃−r)
P
s∈ ˜̃N

φsKs. The first equality holds by definition. The other

equalities are obtained by rearranging the sum and by recognizing complementary

events.

(viii.a) ∂Z1(p)/∂φi < 0 if at least one product on the right-hand side of (6) is strictly

negative. This is certainly so for ψ = Φ−{1, j}. (Note that if i ∈ Φ, 0 < q1,ψ∪{i} < K1

whereas if i /∈ Φ, 0 < q1,ψ < K1.) Part (iv) completes the proof.

(viii.b) Let Ψ1 be the set of the subsets ψ of N−(r+1)−i which satisfy inequality

D(p) >
P
h∈ψKh. Ψ1 is not empty since {1, 2, ..., r} ∈ Ψ1. Let Ψ2 be the set of the

subsets ψ of N−(r+1)−i which satisfy inequality D(p) <
P
h∈ψKh +Kr+1 +Ki. Ψ2 is

not empty since Φ−{r+1, i} ∈ Ψ2. Because of part (iii) the claim is proved if Ψ1∩Ψ2 6= ∅.
Assume contrariwise that Ψ1 ∩ Ψ2 = ∅. Then for any ψ ∈ Ψ1, D (p) −

P
h∈ψKh >

Kr+1 + Ki > 0, while, for any ψ ∈ Ψ2, D (p) −
P
h∈ψKh 6 0 < Kr+1 + Ki. Of

course, there is some ψl ∈ Ψ1 such that {1, 2, ..., r} ⊆ ψl and ψl ∪ {l} ∈ Ψ2. Therefore

Kl > D(p)−
P
h∈ψl Kh > Kr+1 +Ki, which contradicts the fact that Kl 6 Kr+1 and

Ki > 0. Statement (iv) completes the proof.

(viii.c) If 1 /∈ ψ ⊆ N−i−j , then qi,ψ∪{j} − qi,ψ = Ki −Ki = 0. If 1 ∈ ψ ⊆ N−i−j ,
then qi,ψ∪{j} − qi,ψ = 0− 0 = 0.
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(ix) SinceKi = Kj , Zi(p;φ−i−j , β) = Zj(p;φ−i−j , β). Hence Zi(p;φ−i)−Zj(p;φ−j) =

(φj − φi)∂Zi/∂φj .
(x) Since φi > φj = 0, Zi(p;φ−i) = Zi(p;φ−i−j , 0), whereas Zj(p;φ−j) 6 Zj(p;φ−i−j , 0)

because of part (iii). Thus it suffices to prove that (Kj/Ki)Zi(p;φ−i−j , 0) > Zj(p;φ−i−j , 0).

Note that for any qi,ψ with a positive coefficient in Zi(p;φ−i−j , 0) there is a correspond-

ing qj,ψ with a positive coefficient in Zj(p;φ−i−j , 0), based on the same ψ ∈ P(N−i−j),
and vice versa. The claim follows since (Kj/Ki)qi,ψ > qj,ψ for each ψ ∈ P(N−i−j). ut

Parts (iv)-(vii) of Lemma 1 allow a nice interpretation of the Jacobian matrix

[∂Zi/∂ψj ]i,j∈N . If #Ñ = s, Ñ = {1, 2, ..., s}, because of part (v). Submatrix [∂Zi/∂ψj ]
i,j∈ ˜̃N

is a zero (n − s) × (n − s) matrix, because of parts (iv), (v), and (vi). Submatrix

[∂Zi/∂ψj ]
i∈ ˜̃N,j∈Ñ

is a negative (n − s) × s matrix whose rank is 1, because of parts

(v) and (vi). Similarly, submatrix [∂Zi/∂ψj ]
i∈Ñ,j∈ ˜̃N

is a negative s × (n − s) matrix

whose rank is 1, because of parts (v) and (vii). Finally, submatrix [∂Zi/∂ψj ]i,j∈Ñ is

an s × s matrix with all elements on the main diagonal nought and all off-diagonal

elements negative, because of part (v).

3 Mixed strategy equilibria under oligopoly

In this section we establish a number of general properties of mixed strategy equilibria

under oligopoly. Since [12] it has been known that pM = p
(1)
M = p

(2)
M = arg max p(D(p)−

K2) in a duopoly with K1 > K2; also, φ1(pM ) < φ2(pM ) = 1 if K1 > K2, while

φ1(pM ) = φ2(pM ) = 1 if K1 = K2. Therefore Π∗i = pM (D(pM )−K2) for any i such

that Ki = K1. These results have recently been generalized to oligopoly, as summarized

here.

Proposition 2 φi(pM ) = 1 for any i such that Ki < K1, pM = arg max p(D(p) −P
j 6=1Kj), p

(i)
M = pM for some i such that Ki = K1, and Π∗i = max p(D(p) −P

j 6=1Kj) for any i : Ki = K1.

Proof For a complete proof, see [2] and [6], and, more recently, [16], [14], and [11]. ut

The following proposition establishes quite expected properties of mixed strategy

equilibria.

Proposition 3 (i) For any i ∈ N , Π∗i = Πi(p) for p in the interior of Si.

(ii) For any p◦ ∈ (pm, pM ), p◦ > P (
P
i:p

(i)
m <p◦

Ki).

(iii) #L > 2 and #M > 2.

(iv) For any p◦ ∈ (pm, pM ), #{i : p◦ ∈ Si} 6= 1.

Proof (i) Suppose contrariwise that Π∗i > Πi(p
◦) for some p◦ in the interior of Si.

This reveals that p◦ is not charged by i: it is Pr(pj = p◦) > 0 for some j 6= i and

Zi(p
◦;φ−i(p

◦)) > Πi(p
◦) > limp→p◦+ Zi(p;φ−i(p)). As a consequence, Π∗i > Πi(p)

on a right neighborhood of p◦: a contradiction.

(ii) Otherwise for i such that p
(i)
m < p◦ it would be Πi(p) = pKi for p ∈ Si∩[pm, p

◦]:
a contradiction.
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(iii) Assume contrariwise that L = {i}. Then, on a right neighborhood of pm,

Πi(p) = pmin{Ki, D(p)}, a non-constant function. A similar contradiction would occur

if M = {1}.
(iv) If #{i : p◦ ∈ Si} = 1, then φ−i(p) are all constant for p close enough to p◦,

and Πi(p) = Π∗i cannot be positive there: by Lemma 1(i)-(ii), ∂Zi(p;φ−i)/∂p = 0 only

if Zi(p;φ−i) = 0. ut

The following proposition about pm and pM generalizes well known results concern-

ing duopoly to oligopoly. Similar generalizations were also provided by Ubeda [16] in

a different context. In order to shorten notation, we henceforth denote limp→h+Πi(p)
and limp→h−Πi(p) as Πi(h

+) and Πi(h
−), respectively, and limp→h+ φi(p) as φi(h

+).

Proposition 4 (i) p
(i)
m = pm for any i such that Ki = K1.

(ii) pm = max{bp,bbp} where bp = Π∗1/K1 and bbp is the smallest solution of equation

pD(p) = Π∗1 ; Π∗1 = bpK1 or Π∗1 = bbpD(bbp) according to whether bp > bbp or bp 6 bbp.

(iii) pm > P (
P
j∈LKj).

(iv) p
(i)
M = pM for any i such that Ki = K1.

Proof (i) Since D(pM ) >
P
j 6=1Kj , if p

(i)
m > pm for some i 6= 1 such that Ki = K1,

then a fortiori D(p) >
P
j∈LKj for p 6 pM : as a consequence, for any j ∈ L, Πj(p)

is increasing for p ∈ [pm, p
(i)
m ): a contradiction.

(ii) If p < max{bp,bbp}, then Π1(p) 6 pmin{D(p),K1} < Π∗1 = bpK1 = bbpD(bbp). Hence,

pm > max{bp,bbp}. On the other hand, if pm > max{bp,bbp}, then Π1(p−m) > Π∗1 . Indeed, ifbp > bbp, then D(bp) > K1 so that it is either D(pm) > K1, hence Π1(p−m) = pmK1 > bpK1,

or D(pm) < K1, hence Π1(p−m) = pmD(pm) > bbpD(bbp) (since pD(p) is increasing for

p ∈ [0, pM ]). If bbp > bp, then D(bbp) < K1 and hence Π1(p−m) = pmD(pm) > bbpD(bbp).
(iii) If #L = n and pm 6 P (

P
j∈LKj), then each firm earns no more than its

competitive profit, contrary to Proposition 2. If #L < n and pm < P (
P
j∈LKj),

then Πj(p) is increasing over a right neighborhood of pm, any j ∈ L: an obvious

contradiction. If #L < n and pm = P (
P
j∈LKj), then Π∗i = pmKi even if pm were

charged with positive probability by some j ∈ L− {i}. As a consequence,

Π∗i = Πi(p) = p

24D(p)−
X

j∈L−{i}
Kj

35 Y
j∈L−{i}

φj(p) + pKi

241−
Y

j∈L−{i}
φj(p)

35
= p[D(p)−D(pm)]

Y
j∈L−{i}

φj(p) + pKi

in a neighborhood of pm. Therefore
Q
j∈L−{i} φj(p) =

(pm−p)Ki
p[D(p)−D(pm)]

, which is decreas-

ing in a right neighborhood of pm since limp→p+m d
Q
j∈L−{i} φj(p)/dp = [KipmD

′′(p)+

2D′(p)]/2p2m[D′(p)]2 < 0: an obvious contradiction.

(iv) Let K2 = K1, p
(1)
M = pM and p

(2)
M < pM . Since φ1(p) < φ2(p) = 1 for

p ∈ (p
(2)
M , pM ), Π1(p) < Π2(p) there because of the following Lemma 2(a) and Lemma

1(ix). As a consequence, Π∗2 > Π2(p) > Π1(p) = Π∗1 for p ∈ (p
(2)
M , pM )∩S1, contrary to

the fact that Π∗1 = Π∗2 because of Proposition 2. Quite similarly, if (p
(2)
M , pM )∩S1 = ∅,

i.e., Pr(p1 = pM ) = 1− φ1(p
(2)
M ) > 0, then Π∗2 > Π2(p−M ) > Π1(pM ) = Π∗1 . ut
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Lemma 2 If p ∈ (pm, pM ), then

(a) [∂Z1/∂φi]φ−1=φ−1(p) < 0 and [∂Zi/∂φ1]φ−i=φ−i(p) < 0 for any i ∈ N−1;

(b) if p < P (
Pr
h=1Kh) then [∂Zi/∂φj ]φ−i=φ−i(p) < 0 and [∂Zj/∂φi]φ−j=φ−j(p) <

0 for any i 6 r + 1 and any j ∈ N−i;
(c) if p > P (K1), [∂Zi/∂φj ]φ−i=φ−i(p) = 0 for any i ∈ N−1 and any j ∈ N−1−i.

Proof Proposition 2, Proposition 3(ii)-(iii), and Proposition 4(i) imply that for (φi, φ−i) =

(φi(p), φ−i(p)) and p ∈ (pm, pM ) the assumptions of part (viii) of Lemma 1 hold. Then

the claim follows from Lemma 1(iv)-(v)&(viii) and from the fact that the demand func-

tion is not increasing. ut

Note that, since bp is decreasing in K1, the event of bbp > bp arises at relatively large

levels of K1. Proposition 4(ii) has an immediate consequence:

Corollary 1. pm > P (K1) if and only if bbp > bp.
An interesting question is whether some price p ∈ [pm, pM ] is charged with positive

probability by some firm at a mixed strategy equilibrium. This event can be ruled out

for any p ∈ (pm, pM ).

Proposition 5 For any p◦ ∈ (pm, pM ), Pr(pj = p◦) = 0 for any j.

Proof If φj(p
◦) < φj(p

◦+) for some j, then p◦ ∈ Sj by definition. According to

Proposition 3(iv), p◦ ∈ Si for some i 6= j. For any such i, Πi(p
◦−) = Πi(p

◦+)

if and only if [∂Zi(p
◦, φ−i)/∂φj ]φ−i(p◦)6φ−i6φ−i(p◦+) = 0. Then, by Lemma 1(iv),

[∂Zj(p
◦, φ−j)/∂φi]φ−j=φ−j(p◦) = 0 for any i such that p◦ ∈ Si. Finally, because of

Lemma 1(vi), there is G(φ̂(p)) such that Zj(p;φ−j(p)) = G(φ̂(p))pKj in a neighbor-

hood of p◦, where φ̂(p) is the set of all φr(p) such that p◦ /∈ Sr. This contradicts the

fact that in the same neighborhood, or part of it, Zj(p;φ−j(p)) must be constant. ut

Next we show that, as in the duopoly, pM is charged with positive probability by

the largest firm if and only if K1 > K2; furthermore, equilibrium strategies are the

same for any firm with the largest capacity.

Proposition 6 (i) Let K1 > K2. Then φ1(pM ) < 1. (ii) Let K2 = K1. Then: (ii.a) for

any r such that Kr = K1, φr(pM ) = φ1(pM ) = 1 and (ii.b) φr(p) = φ1(p) throughout

[pm, pM ]. (ii.c) For any j such that Kj < K1, p
(j)
M < pM .

Proof (i) If φ1(pM ) = 1, then, because of Proposition 2, φi(pM ) = 1 (each i). Hence

Π∗i = Πi(p
−
M ) = pM max{D(pM )−

P
j 6=iKj , 0} for i ∈M−{1}. But then Πi(p) > Π∗i

for some p ∈ (0, pM ), since arg max p[D(p)−
P
j 6=iKj ] ∈ [0, pM ) and Πi(p) > p[D(p)−P

j 6=iKj ] since a firm cannot get less of the profit obtained when all other firms charge

a lower price.

(ii.a) Suppose contrariwise that, say, φ1(pM ) < φr(pM ) = 1. Then Lemma 2(a)

and Lemma 1(ix) would yield Πr(p
−
M ) > Π1(pM ) = Π∗1 , contrary to Proposition 2.

(ii.b) The claim is obviously true at any p ∈ S1 ∩Sr: if, say, φr(p) > φ1(p) then by

Lemma 2(a) and Lemma 1(ix) it would be Πr(p) > Π1(p), contrary to Proposition 2.

One can similarly rule out φr(p) > φ1(p) over some interval belonging to S1 and not
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to Sr. If φr(p) > φ1(p) over some interval belonging to Sr and not to S1, then φ1(p)

should subsequently jump up, contrary to either Proposition 5 or Proposition 6(ii.a).

(ii.c) If p
(j)
M = pM , the contradiction in the proof of part (i) holds, since φ1(pM ) = 1

because of part (ii.a). ut

In a different context Ubeda [16] has proved that Π∗i = Π∗j for any i and j

such that Kj = Ki < K1. In the following we also prove that φi(p) = φj(p) ifˆ
∂Zi(p;φ−i)/∂φj

˜
φ−i=φ−i(p)

< 0. Because of Lemma 1(vi)-(vii), this means that ei-

ther φi(p) = φj(p) or φi(p) and φj(p) are not fully determined. This will be clarified

below.

Proposition 7 Let Kj = Ki < K1. Then, (i) Π∗i = Π∗j and (ii) φi(p) = φj(p) at any

p ∈ (pm, pM ) where
ˆ
∂Zi(p;φ−i)/∂φj

˜
φ−i=φ−i(p)

< 0.

Proof By Lemma 1(ix), Πi(p
−
m) > Π∗j and Πj(p

−
m) > Π∗i : hence Π∗i = Π∗j . In order to

prove part (ii), assume first that Si ∩Sj is empty. With no loss of generality, let Sj be

entirely on the right of Si. Then, Πi(p
(j)
m ) > Πj(p

(j)
m ) (by Lemma 1(ix), since φj(p

(j)
m ) =

0 < φi(p
(j)
m ) = 1): hence a contradiction, since Π∗j = Πj(p

(j)
m ) and Π∗i = Π∗j . One can

similarly rule out the event of p
(i)
m 6= p

(j)
m and p

(i)
M 6= p

(j)
M . Finally, some interval internal

to [p
(i)
m , p

(i)
M ] cannot be in Sj but not in Si, otherwise Pr(pi = p◦) should be positive

at some higher p◦ ∈ Si (contrary to Proposition 5), since p
(i)
M = p

(j)
M . ut

The following result concerns equilibrium profits for firms j ∈ {2, ..., n}. (For a

proof of part (ii) in a different context, see [16].)

Proposition 8 (i) Π∗2 = pmK2. (ii) Π∗j /Kj 6 Π∗i /Ki for any i, j such that Kj > Ki.

Proof (i) If K2 = K1, then Π∗2 = pmK2 by Proposition 2 since D(pm) >
P
j 6=1Kj .

Let K2 < K1. If p
(2)
m = pm, then Π∗2 = pmK2 since Π2(p−m) = pmK2. If p

(2)
m > pm,17

then, by Proposition 5, Π∗2 = Z2(p
(2)
m ;φ−2(p

(2)
m )). By Proposition 7 and Proposition

3(iii), p
(i)
m = pm and Π∗i = pmKi for some i such that Ki < K2, whereas, by Lemma

1(x), (K2/Ki)Zi(p
(2)
m ;φ−i(p

(2)
m )) > Z2(p

(2)
m ;φ−2(p

(2)
m ). Hence pmK2 = (K2/Ki)Π

∗
i >

(K2/Ki)Zi(p
(2)
m ;φ−i(p

(2)
m )) > Z2(p

(2)
m ;φ−2(p

(2)
m )) = Π∗2 > Π2(p−m) = pmK2.

(ii) If p
(j)
m = pm, Π∗j = Πj(p

−
m) = pmKj whereas Π∗i > pmKi. If p

(j)
m > pm, then,

no matter whether p
(i)
m S p

(j)
m , we can exploit Lemma 1(x), as in the proof of part

(i). ut

The previous result has an immediate corollary.

Corollary. Let p
(j)
m > pm and Π∗j > pmKj for some j such that Kj < K1. Then

p
(i)
m > pm for i such that Ki < Kj .

17 In our study of the triopoly below we will identify the subset of the capacity space where

p
(2)
m > pm.
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We can now compare equilibrium profits (Π∗i ) with minmax profits (Πi,mM ) in

circumstances where the equilibrium is in mixed strategies. (Close scrutiny of these

issues was already provided by Ubeda [16] in a different context.) Let pi,mM be firm

i’s minmax price.

Proposition 9 (i) Π∗i = Πi,mM for any i : Ki = K1. (ii) For any i such that

Ki < K1, Π∗i > Πi,mM .

Proof (i) Let σ−i denote a mixed strategy profile on the part of firm i’s rivals and let

p(σ−i) denote any of firm i’s best response to σ−i. Since pM > pc and pm min{D(pm),K1} =

pM [D(pM )−
P
j 6=1Kj ], then clearly Πi(p(σ−i), σ−i) > pM (D(pM )−

P
j 6=1Kj), with

strict equality holding for some σ−i. Thus pi,mM = arg max p(D(p) −
P
j 6=1Kj) and

Πi,mM = Π∗1 .

(ii) We know that Π∗i > pmKi, hence the claim is obviously true if Πi,mM = 0,

i.e., if
P
j 6=iKj > D(0). If

P
j 6=iKj < D(0), then pi,mM = max{pc, arg max p[D(p)−P

j 6=iKj ]}, which is less than pM . Now, if pi,mM > pc, thenΠi,mM = pi,mM [D(pi,mM )−P
j 6=iKj ] and the claim is immediately proved when pi,mM ∈ (pc, pm] since then

pmKi > Πi,mM . If pi,mM > pm, thenΠ∗i > Πi,mM sinceΠi(pi = pi,mM , φ−i(pi,mM )) >

Πi,mM (in fact, φ1(pi,mM ) < 1 since pi,mM < pM ). ut

Let Λ(p) = {i : p ∈ Si} for an equilibrium profile of strategies (φ1(p), ..., φn(p)).

Then, because of Proposition 5,

Π∗i = Zi(p;φ−i(p)) (7)

each i ∈ Λ(p). Hence if a profile of strategies is known, equations (7) are able to

determine the equilibrium profits relative to that profile. Conversely, assume to know

Λ(p◦), φj(p
◦)’s (any j /∈ Λ(p◦)), and the equilibrium payoffs Π∗i ’s for each i ∈ Λ(p◦).

Then, over some neighborhood of p◦, system (7) defines implicitly φj(p)’s (any j ∈
Λ(p◦)) provided that the Jacobian determinant ∂(Zi∈Λ(p◦)/∂(φi∈Λ(p◦)) is different

from zero at p◦ and Λ(p) = Λ(p◦) in that neighborhood. An obvious case in which

Λ(p) 6= Λ(p◦) for some p in that neighborhood is when φj(p) (some j) so defined is

decreasing for that p (concavity of the demand function is not enough to rule out such

an event when #Λ(p◦) > 2).

Note that according to Lemma 1(vi)-(vii) the Jacobian determinant ∂(Zi∈Λ(p◦)/∂(φi∈Λ(p◦))

is equal to zero if ∂Zi/∂φj = 0 and both i and j are in Λ(p◦). In that case there is an

infinite number of solutions. In fact the same Lemma 1(vi)-(vii) allows system (7) to

be written as:

Π∗i = Qi(p; φ̃−i(p))− pRi(φ̃−i(p))
X
s∈ ˜̃N

φs(p)Ks, i ∈ Ñ ∩ Λ(p◦) (8)

Π∗j = Qj(p; φ̃−j(p)) +
Rj(φ̃−j(p))

Ri(φ̃−i(p))
[Π∗i −Qi(p; φ̃−i(p))], i 6= j ∈ Ñ ∩ Λ(p◦) (9)

Π∗r = pKrG(φ̃(p)), r ∈ ˜̃N ∩ Λ(p◦) (10)

There are #(Ñ ∩ Λ(p◦)) − 1 linearly independent equations (9) which jointly with

one equation (10) are able to determine the #(Ñ ∩ Λ(p◦)) functions φi(p) for i ∈
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Ñ ∩ Λ(p◦).18 Finally, equation (8) is the equality constraint upon the #( ˜̃N ∩ Λ(p◦))

functions φi(p) for i ∈ ˜̃N ∩ Λ(p◦).
An example may be useful. It is easily checked that if n = 4 and K1 +K2 > D(p) >

K1+K3+K4, then φ1(p) and φ2(p) are uniquely determined, but φ3(p) and φ4(p) may

not be so. If they are determined, then either φ3(p) = φ4(p) = 0 or φ3(p) = φ4(p) = 1.

Otherwise they just need to satisfy the equation K3φ3(p) + K4φ4(p) = D(p) −K1 −
K2 +

p
K1K2(p− pm)/p.19

A special case obtains for p ∈ (P (K1), pM ) (see Lemma 2), when #Λ(p) > 2. It

must preliminarily be noted that p ∈ S1. (For the sake of brevity we do not provide

a proof; the reader can easily find it along the same lines of the proof given for the

following proposition.) Further, no equation (9) exists since Ñ = {1}. Equation (10)

yields φ1(p) = (p − pm)/p, whereas the φj ’s (any j 6= 1) are not determined for any

j = #Λ(p)− {1}: they need to satisfy the equation

p
X
j 6=1

Kjφj(p) = pD(p)−Π∗1 (11)

and inequalities 1 > φj(p) > φj(P (K1)). An even more special case obtains when

K1 > D(pm).

Proposition 10 If K1 > D(pm), then Pr(pi = pm) = 0 for each i, Π∗1 = pmD(pm)

and Π∗j = pmKj for j 6= 1; φ1(p) = 1−pm/p, while the φj(p)’s are any (n−1)-tuple of

non-decreasing functions such that 20 equation (11) holds, φj(pm) = 0 and φj(pM ) = 1

for any j 6= 1. Equation (11) is consistent with any L such that 1 ∈ L and 2 6 #L 6 n,

and even with gaps in Sj . Among the infinite solutions, there exists a symmetric one

in which

φj(p) =
pD(p)−Π∗1
p
P
j 6=1Kj

for j 6= 1.

Proof It is easily checked that Zj(p, φ−j(p)) = p[1 − φ1(p)]Kj for any j 6= 1: in fact,

φi(p) (each i 6= 1, j) does not affect firm j’s payoff when charging p such that D(p) <

K1, the residual demand forthcoming to j being either zero (if p1 < p) or higher than

Kj (if p1 > p, since D(p) >
P
j 6=1Kj for p 6 pM ). Thus φ1(p) = (p − pm)/p on

a neighborhood of pm - hence φ1(p+m) = 0 - since Π∗j = Zj(p, φ−j(p)) = pmKj for

j ∈ L−{1}. In fact, if instead Π∗j = Zj(p, φ−j(p)) < pmKj for j ∈ L−{1} - and hence

φ1(p+m) > 0 - then Π∗j = Zj(p
+
m;φ−j(p

+
m)) < Πj(p

−
m) = pmKj : a contradiction. Since

Zi(p, φ−i(p)) = Zj(p, φ−j(p))(Ki/Kj) for all i, j 6= 1, it is in fact φ1(p) = (p− pm)/p

throughout [pm, pM ] so that Π∗i = pmKi for each i 6= 1. To see this, note that, if

φ1(p) < (p − pm)/p for some p ∈ (pm, pM ), then Πj(p) = p[1 − φ1(p)]Kj > pmKj ,

a contradiction for j ∈ L − {1}. If instead φ1(p) > (p − pm)/p over some interval in

(pm, pM ), then that interval is a gap in Si (each i 6= 1) since then Zi(p, φ−i(p)) <

18 We are excluding any indeterminacy not connected with the structure of zeros.
19 Let D(p) = 16 − p, K1 = 9, K2 = 6, K3 = 1.2 ,K4 = 0.8. It is easily verified that
pM = 4, pm = 16/9, Π∗1 = 16, Π∗2 = 32/3; in the range (pm, p), where p ' 1.799049189,
φ1(p) = (18p−32)/[3p(p−1)], φ2(p) = (9p−16)/[p(p−1)], and φ3(p) = φ4(p) = 0; in the range

(p, p), where p ' 2.190859761, φ1(p) =
p
K2(p− pm)/K1p, φ2(p) =

p
K1(p− pm)/K2p,

and φ3(p) and φ4(p) are indetermined; in the range [p, pM ], instead, φ3(p) = φ4(p) = 1,
φ1(p) = (18p− 32)/[3p(1 + p)], φ2(p) = (9p− 16)/[p(1 + p)].
20 That there is a continuum of equilibria in this region has also been proved by Hirata (see

Claim 2 in [11]).
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Πi(pm) = pmKi for p in that interval. Thus either Proposition 3(iv) is contradicted or

that interval is a gap in S1 too: but then, at some lower price p◦, φ1(p◦+) > φ1(p◦) =

(p◦ − pm)/p◦, contrary to Proposition 5.

Therefore, any equilibrium (φ1(p), ..., φn(p)) is a solution of the n-equation system

Π∗i = Zi(p;φ−i(p)), where the left side equals pmKi for each i 6= 1, a system containing

just two independent equations. Thus any φ−1(p) such that Π∗1 = Z1(p;φ−1(p)) -

namely, such that equation (11) holds - is part of an equilibrium, so long as, each

j 6= 1, φj(pm) = 0, φj(pM ) = 1, φ′j(p) > 0, and φj(p
+) = φj(p) for any p ∈ [pm, pM ].

Indeed, if φj(p
+
m) > 0 for j 6= 1, then Π∗1 = Z1(p+m;φ−1(p+m)) < Π1(p−m) = pmD(pm):

a contradiction. It is easily checked that the symmetric equilibrium solution satisfies the

constraints φj(pm) = 0, φj(pM ) = 1, and φ′j(p) > 0 throughout [pm, pM ). Existence of

equilibria with gaps in some Sj 6= 1 is quite obvious. ut

4 Triopoly: equilibrium profits and upper and lower bounds of the

supports of equilibrium strategies

In the previous sections we established a number of properties for the mixed strategy

equilibrium under oligopoly. Equipped with these results and in order to get further

insights for oligopoly, in the remainder of the paper we provide a comprehensive study

of mixed strategy equilibria in triopoly. Compared to duopoly, triopoly will be seen to

allow for much wider diversity throughout the region of mixed strategy equilibria, the

equilibrium being affected on several grounds by the ranking of pm and pM relative to

the demand prices of different aggregate capacities, namely, P (K1 +K2), P (K1 +K3),

and P (K1).

As soon as one sets out to construct the equilibrium it emerges that features of

the equilibrium vary considerably throughout the region of mixed strategy equilibria.21

Let us build a partition of the region of mixed strategy equilibria that fully accounts

for the diversity in the equilibrium profits, the bounds of the equilibrium supports, and

the degree of determinateness of the equilibrium. (Note that, because of Proposition 2

and Proposition 4(ii) pM and pm are known once K1, K2, and K3 are given.)

First of all, we partition the region of mixed strategy equilibria into two parts: that

in which K2 > K3 and that in which K2 = K3. The first part is then partitioned into

four regions: those in which pm 6 P (K1 + K2), P (K1 + K2) < pm < P (K1 + K3),

P (K1 + K3) 6 pm < P (K1), and pm > P (K1), respectively. The first region is

partitioned into the sets

A = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 +K2), pM 6 P (K1 +K3)}
B1 = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 + K2), P (K1 + K3) < pM 6

P (K1)}
E1 = {(K1,K2,K3) : K1 > K2 > K3, pm 6 P (K1 +K2), pM > P (K1)}.
The second region consists of set

C1 = {(K1,K2,K3) : K1 > K2 > K3, P (K1 +K2) < pm < P (K1 +K3)}.
The third region is partitioned into the sets

C2 = {(K1,K2,K3) : K1 > K2 > K3, P (K1 +K3) 6 pm, pM 6 P (K1)}
C3 = {(K1,K2,K3) : K1 > K2 > K3, P (K1 + K3) 6 pm < K1−K3

K1
P (K1), pM >

P (K1)}

21 More precisely, in the subset of the region of mixed strategy equilibria where K1 > K2 >
K3.
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Fig. 1 Taxonomy for D(p) = 1− p and K2 +K3 = 1/4.

F = {(K1,K2,K3) : K1 > K2 > K3,max{P (K1 + K3), K1−K3
K1

P (K1)} 6 pm <

P (K1), pM > P (K1)}.
The fourth region is part of the set

D = {(K1,K2,K3) : K1 > K2 > K3, pm > P (K1)}.
The part of the region of mixed strategy equilibria in which K2 = K3 is partitioned

into two regions, in which pm < P (K1) and pm > P (K1), respectively. The first region

is partitioned into the sets

B2 = {(K1,K2,K3) : K1 > K2 = K3, pm < P (K1), pM 6 P (K1)}
E2 = {(K1,K2,K3) : K1 > K2 = K3, pm < P (K1), pM > P (K1)}.
The second region is what remains of set D. We will prove that all points in the

sets labeled by the same letter are alike in terms of the determination of equilibrium

profits, the upper and lower bounds of the supports of equilibrium strategies,22 and

the determinateness of equilibrium.

One can devise an almost complete graphical representation of the above partition

in a (K1,K2) plane, by focusing on a convenient two-dimension surface of the capacity

space. This is done in Figure 1, where it is assumed that D(p) = 1− p and K2 +K3 =

1/4. For obvious reasons, K2 ∈ [1/8, 1/4); and, for the equilibrium to be in mixed

strategies, K1 >
3
8 . Then pM = 3

8 and Π∗1 = 9
64 . Sets B2 and E2 are located on the

straight line K2 = 1
8 : B2 for 3/8 < K1 6 3/8, E2 for 3/8 < K1 < (4 +

√
7)/8. To

locate the other sets we need to insert other geometrical loci. Along curve α in the figure

(hyperbola K2 = − 9−64K1+64K2
1

64K1
), pm = P (K1 +K2): A ∪ B1 ∪ E1 is not above this

curve whereas C1∪C2∪C3∪F ∪D is. Along curve β (hyperbola K2 =
9−48K1+64K2

1
64K1

),

pm = P (K1 +K3): A ∪ B1 ∪ E1 ∪ C1 is above this curve whereas C2 ∪ C3 ∪ F is not

and D is below. Along the straight line γ (K2 = K1− 3
8 ), pM = P (K1 +K3): A is not

below it whereas B1 ∪E1 is. Along the vertical line K1 = 5
8 , pM = P (K1): A is on the

left of it, B1 ∪B2 ∪C2 is not on the right of it whereas C3 ∪E1 ∪E2 ∪F ∪D is. Along

curve δ (hyperbola K2 =
25−80K1+64K2

1
64(1−K1)

), pm = K1−K3
K1

P (K1): C3 is above it whereas

F is not. Along the vertical line K1 = 4+
√

7
8 , pm = P (K1): D is not on the left of it

whereas all other sets are. Note that set C2 is empty. Simple calculations show that,

22 Compared to [10], in [11] Hirata arrives at a partition almost as fine as ours (which we
already achived in [7]), except that no distinction is made between our sets A and B1.
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with D(p) = 1− p, set C2 is empty so long as K2 +K3 6 1
3 , whereas set E1 is empty

so long as K2 +K3 > 1
3 .

It is also checked that actually K1 > K2 + K3 whenever pM > P (K1), hence at

any (K1,K2,K3) ∈ C3 ∪D∪E1 ∪E2 ∪F, and K1 > K2 whenever pM > P (K1 +K3),

hence at any (K1,K2,K3) ∈ B1 ∪ C2.

The following theorem collects all the results to be achieved in this section. From

the previous section we know about Π∗1 and Π∗2 and we also know that Π∗3 > pmK3

if K2 > K3 and Π∗2 = Π∗3 if K2 = K3. Among other things, the theorem locates the

region where Π∗3 = pmK3 and the region where Π∗3 > pmK3 and determines p
(3)
m and

Π∗3 in the latter region.

Theorem 1. (a) In A, Π∗i = pmKi for all i, L = {1, 2, 3} and M = {1, 2}.
(b) In B1 ∪B2, Π∗i = pmKi for all i and L = M = {1, 2, 3}.
(c) In C1 ∪ C2 ∪ C3, Π∗i = pmKi for i 6= 3 and Π∗3 > pmK3; L = M = {1, 2};

p
(3)
M < P (K1). Let φ1α(p) and φ2α(p) be defined by equations Π∗1 = Z1(p;φ2α, 0)

and Π∗2 = Z2(p;φ1α, 0) so that φ1α(p) and φ2α(p) are firms 1 and 2’s equilibrium

strategies and Z1(p;φ2α(p), 0) and Z2(p;φ1α(p), 0) firms 1 and 2’s equilibrium payoffs,

respectively, over the range α = [pm, p
(3)
m ].23 Then Π∗3 = maxp∈eαΠ3α(p) and p

(3)
m =

arg maxp∈eαΠ3α(p), where Π3α(p) = Z3(p;φ1α(p), φ2α(p)), eα = [pm, p
∗
M ] and p∗M is

such that φ2α(p∗M ) = 1.24

(d) In D, Π∗1 = pmD(pm) and Π∗j = pmKj for j 6= 1; φ1(p) = 1 − pm/p, while

φ2(p) and φ3(p) are any pair of non-decreasing functions such that

pK2φ2(p) + pK3φ3(p) = pD(p)−Π∗1 , (12)

φj(pm) = 0 and φj(pM ) = 1 for j 6= 1, and S2 ∪ S3 is connected.

(e) In E1∪E2, Π∗i = pmKi for all i, L = {1, 2, 3} and #M > 2 with bpM > P (K1).

Over [P (K1), pM ], φ1(p) = 1 − pm/p, and φ2(p) and φ3(p) are any pair of non-

decreasing functions such that equation (12) holds, φj(P (K1)+) = φj(P (K1)−) and

φj(pM ) = 1 for j 6= 1, and S2 ∪ S3 is connected.

(f) In F , Π∗i = pmKi for all i, L = {1, 3} and p
(2)
m > P (K1). Over the range

[P (K1), pM ] strategies are determined as in E1 ∪ E2.

(g) Pr(pi = pm) = 0 for each i ∈ L.

To establish Theorem 1 we begin by determining L and Π∗3 whenever 3 ∈ L. Then

we analyze the cases in which φ2(p) and φ3(p) are not fully determined. Next, we

determine M whenever φ2(p) and φ3(p) are fully determined. Finally, we complete

the proof of the Theorem. In connection to the first task an intermediate step is the

following Lemma.

Lemma 3. If #L = 2, then Pr(pj = pm) = 0 for each j ∈ L; if #L = 3 and

Pr(pi = pm) > 0 for some i, then Pr(pj = pm) = 0 for each j 6= i.

23 We take it for granted that [pm, bpm] ∈ S1 ∩ S2. For the sake of simplicity the proof that
there is no gap in the range [pm, bpm] is postponed to the next section.
24 The fact that p

(3)
m > pm and Π∗3 > pmK3 in what is here called C1, C2, and C3 has also

been recognized by Hirata (see [11], Claims 4 and 5). However, Hirata is not concerned with

how p
(3)
m and Π∗3 are actually determined in that event.
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Proof Let L = {i, j}. If Pr(pj = pm) > 0, then, taking account of Proposition 4(iii),

Π∗i = Πi(p
+
m) < pm min{D(pm),Ki} while Πi(p

−
m) = pm min{D(pm),Ki}: a contra-

diction. A similar argument proves what is claimed when L = {i, j, k}. ut

We can now address the determination of L. Note that Pr(pi = pm) = φi(p
+
m).

Furthermore, recall that if L = {1, 2, 3}, then equilibrium strategies are a solution of

system

Π∗i = Zi(p;φ−i(p)), φi(p) > 0, φ′i(p) > 0 for each i, (13)

in an open to the left right neighborhood of pm, where Π∗3 is a constant to be deter-

mined.

Proposition 11 (i) Let (K1,K2,K3) ∈ A ∪ B1 ∪ E1. Then L = {1, 2, 3}, Pr(pi =

pm) = 0 and Π∗i = pmKi for each i.

(ii) Let (K1,K2,K3) ∈ B2 ∪ E2. Then L = {1, 2, 3}, Pr(pi = pm) = 0 and Π∗i =

pmKi for each i, φ2(p) = φ3(p) throughout [pm, P (K1)].25

(iii) Let (K1,K2,K3) ∈ C1 ∪ C2 ∪ C3. Then (iii.a) L = {1, 2}, Π∗i = pmKi for

i 6= 3, and Π∗3 > pmK3,(iii.b) p
(3)
M < P (K1).

(iv) Let (K1,K2,K3) ∈ F . Then L = {1, 3}, p(2)m > P (K1) and Π∗i = pmKi for all

i.

Proof (i) Since pm 6 P (K1+K2), it follows from Proposition 4(iii) that L = {1, 2, 3} =

{i, j, r}. Further, it is checked that φi(p
+
m) = 0 for each i at any solution of system

(13). Suppose first that pm < P (K1 +K2). Then the equations in system (13) read

Π∗1 = pφ2(p)φ3(p)[D(p)−K] + pK1,

Π∗2 = pφ1(p)φ3(p)[D(p)−K] + pK2,

Π∗3 = pφ1(p)φ2(p)[D(p)−K] + pK3.

Hence [dZi(p;φ−i(p))/dp]p=p+m = 0 for each i if and only if

(D −K)[φ2φ3 + pm(φ′2φ3 + φ2φ
′
3)] +D′pmφ2φ3 +K1 = 0,

(D −K)[φ1φ3 + pm(φ′1φ3 + φ1φ
′
3)] +D′pmφ1φ3 +K2 = 0,

(D −K)[φ1φ2 + pm(φ′1φ2 + φ1φ
′
2)] +D′pmφ1φ2 +K3 = 0,

where D,D′, φ1, φ2, φ3, φ
′
1, φ
′
2, and φ′3 are all to be understood as limits for p → p+m.

Suppose contrariwise that φi(p
+
m) > 0. Then, according to Lemma 2, φj(p

+
m) =

φr(p
+
m) = 0, and the system above becomes

pm(D −K)(φ′jφr + φjφ
′
r) = −Ki,

pm(D −K)(φ′iφr + φiφ
′
r) = −Kj ,

pm(D −K)(φ′iφj + φiφ
′
j) = −Kr.

But this system cannot hold. Indeed, in order for the first equation to hold either

φ′j = ∞ or φ′r = ∞ (or both): then, either the third equation or the second equation

25 That L = 3 in the circumstances of Proposition 11(i)-(ii) was to a large extent discovered
also by Hirata [11] (Claims 3 and 6). Hirata does not address the issue of Pr(pi = pm).
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(or both) cannot hold. The same logic applies when pm = P (K1 + K2). Finally, that

Π∗i = pmKi for each i follows straightforwardly from L = {1, 2, 3} and Pr(pi = pm) =

0.

(ii) In view of Proposition 3(iii), Proposition 8 and Proposition 9(i), Π∗3 = Π∗2 =

pmK2, L = {1, 2, 3} and φ2(p) = φ3(p) throughout [pm, P (K1)]. Then it follows im-

mediately from Lemma 3 that φ2(p+m) = φ3(p+m) = 0. That φ1(p+m) = 0 is established

along the lines of the proof of the part (i) above if pm 6 P (K1 + K2). If instead

pm > P (K1 +K2) and φ1(p+m) > 0, then Π∗j = Zj(p
+
m, φ−j(p

+
m)) < Πj(p

−
m) = pmKj

for j 6= 1: a contradiction.

(iii.a) If φ3(p) = 0 on a neighborhood of pm, then φ1(p) and φ2(p) are the solutions

of equations Π∗1 = Z1(p;φ2, 0), Π∗2 = Z2(p;φ1, 0) over that neighborhood: this yields

φj(p)=
(pm−p)Ki

p[D(p)−Ki−Kj ] for j = 1, 2. One can easily check that it is then Π3(p) > pmK3

over such a neighborhood, since Π3(pm) = pmK3 and limp→pm+Π
′
3(p) > 0.26 Hence

Π∗3 > pmK3 and φ1(p+m) = φ2(p+m) = 0 if L = {1, 2}. Now, suppose contrariwise

that L = {1, 2, 3} and denote by bφi(p) firm i’s equilibrium strategy (i = 1, 2, 3) on

a right neighborhood of pm. Then, it should be Π∗1 = Z1(p; bφ2(p), bφ3(p)) and Π∗2 =

Z2(p; bφ1(p), bφ3(p)). Clearly, bφ1(p) < φ1(p) and bφ2(p) < φ2(p) because of Lemma 2(b)

and since bφ3(p) > 0. Consequently, a fortiori Z3(p; bφ1(p), bφ2(p)) > pmK3 contrary to

the presumption that L = {1, 2, 3} (implying Π∗3 = Π3(p−m) = pmK3)).

Assume now that L ∈ {1, 3}. In C1, Π∗3 = pK3 for p ∈ (pm,min{p(2)m , P (K1+K3)}]:
an obvious contradiction. In C2 ∪ C3, Π∗i = pφj(p)(D(p) −Kj) + p(1 − φj(p))Ki for

p ∈ (pm,min{p(2)m , P (K1)}], i, j = 1,3; as a consequence, φj(p)= (pm − p)Ki/p[D(p)−
Ki −Kj ] over that range. By charging a price there firm 2 would get

Π2(p) = pφ1(p)(1− φ3(p))[D(p)−K1] + p(1− φ1(p))K2,

which is lower than pmK2 at any p < P (K1). Hence p
(2)
m > P (K1). But this is im-

possible: in C2 since pM 6 P (K1), in C3 since otherwise φ3(P (K1)) = {[P (K1) −
pm]/P (K1)}(K1/K3) > 1, since pmK1 < (K1 −K3)P (K1).

(iii.b) This is trivial in C2 since pM 6 P (K1). In C1 ∪ C3, if p
(3)
M > p > P (K1),

then Π∗3 = p[1 − φ1(p)]K3 and hence φ1(p) < 1 − pm/p since pmK3 < Π∗3 . On the

other hand, it is also Π2(p) = p[1 − φ1(p)]K2 so that Π2(p) > pmK2: an obvious

contradiction.

(iv) The event of L = {1, 2, 3} is ruled out as in the proof of part (iii.a). Under the

event L = {1, 2}, by an argument in the proof of part (iii.b) p
(3)
M < P (K1) and hence

φ2(p) =
p[D(p)−K3]−Π∗1

pK2
over the range (p

(3)
M , P (K1)).27 But then φ2(P (K1)) 6 0 since

pmK1 > (K1−K3)P (K1). Thus p
(1)
m = p

(3)
m < p

(2)
m . Further, p

(2)
m cannot be lower than

P (K1), otherwise, as emerged in the proof of part (iii.a), Π∗2 = Π2(p
(2)
m ) < pmK2.

Thus φj(p) =
(pm−p)Ki

p[D(p)−Ki−Kj ] for j = 2, 3 over the range [pm, P (K1)]. ut

The following proposition finds the sets where the equilibrium is indeterminate at

p ∈ (P (K1), pM ) not investigated by Proposition 10.

26 For example, in C1, Π′3(p) = [1 − φ1(p)φ2(p) − p(φ′1(p)φ2(p) + φ1(p)φ′2(p))]K3 and

limp→pm+Π′3(p) = K3 since φ1(p+m) = φ1(p+m) = 0, limp→pm+ φ′1(p) ∈ (0,∞), and
limp→pm+ φ′2(p) ∈ (0,∞).
27 In the assumption that (p

(3)
M , P (K1)) ⊂ S1 ∩ S2. Assuming otherwise that this range

belongs neither to S1 nor to S2 would lead to a contradiction. See below, Proposition 14(ii).
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Proposition 12 (a) Let (K1,K2,K3) ∈ F . Then over the range [P (K1), pM ], φ1(p) =

1−pm/p. If K1−K3
K1

P (K1) < pm, then φ2(p) and φ3(p) are any pair of non-decreasing

functions meeting (12) and such that φ3(P (K+
1 ) = φ3(P (K−1 ), φ2(P (K+

1 ) = 0, and

S2 ∪ S3 is connected. This is consistent with #M = 3, p
(2)
M < pM , and p

(3)
M < pM ,

and even with (non-overlapping) gaps in both S2 and S3. If K1−K3
K1

P (K1) = pm, then

S2 ∩ S3 = {P (K1)} and the equilibrium is determined.28

(b) Let (K1,K2,K3) ∈ E1∪E2. Then p
(j)
M > P (K1) for j 6= 1. For p ∈ [P (K1), pM ],

φ1(p) = 1 − pm/p while φ2(p) and φ3(p) are any non-decreasing functions consistent

with equation (12) and such that φj(P (K1)+) = φj(P (K1)−), φj(pM ) = 1 for j 6= 1,

and S2 ∪S3 is connected. This is consistent with #M = 3, p
(2)
M < pM , and p

(3)
M < pM ,

and even with (non-overlapping) gaps in S2 and in S3.

Proof It was established above for the oligopoly that, at any p ∈ [P (K1), pM ], p ∈ S1 so

that equation (11) holds, and that φ1(p) = 1− pm/p. Further, because of Proposition

3(iv) gaps in S2 and S3 cannot overlap. To complete the proof we must add the

following.

(a) In this case φ3(P (K1)−) > 0 and φ2(P (K1)−) = 0 because of Proposition

11(iv) Quite interestingly, it can be p
(2)
m > P (K1) rather than p

(2)
m = P (K1). In the

former case, φ3(p)=
pD(p)−Π∗1

pK3
over the range [P (K1), p

(2)
m ] and still φ2(p

(2)
m )+) = 0.

Finally, φ3(P (K1)) = 1 if and only if K1−K3
K1

P (K1) = pm; in this special case, φ2(p)=
p[D(p)−K3]−Π∗1

pK2
over range [P (K1), pM ].

(b) If p
(j)
M < P (K1), then φ1(p) = 1− pm/p as soon as p > p

(j)
M : as a consequence,

Πj(p) > Π∗j for p ∈ [p
(j)
M , P (K1)]. ut

We still have to determine M in A ∪ C1 ∪ C2 ∪ C3 ∪B1 ∪B2.

Proposition 13 (i) Let (K1,K2,K3) ∈ A ∪ C1 ∪ C2 ∪ C3. Then M = {1, 2}.
(ii) Let (K1,K2,K3) ∈ B1 ∪B2. Then M = {1, 2, 3}.

Proof (i) Let us partition set A into subsets A1 (pM 6 P (K1 + K2)), A2 (P (K1 +

K2) < pM < P (K1 + K3)), A3 (pM = P (K1 + K3)), and set C1 into subsets C11

(pM < P (K1 + K3)), C12 (P (K1 + K3) 6 pM < P (K1)), C13 (pM > P (K1)). The

claim is already proved in C13 and C3, given Proposition 11(iii.b). A constructive

argument is provided for A1. By Proposition 11(i), on a right neighborhood of pm
equilibrium strategies are the solutions of the three-equation system

pmKi = pφj(p)φr(p)(D(p)−Kj −Kr) + p(1− φj(p)φr(p))Ki,

so that φi(p) = (Kj/Ki)φj(p). Based on this, it cannot be #M = 3 nor p
(2)
M < pM : it

is instead p
(3)
M < pM , S1 = S2 = [pm, pM ], and S3 = [pm, p

(3)
M ].

As to the other subsets, we first rule out the event of #M = 3 and then the event

of p
(2)
M < pM . Recall that, by Proposition 3, with #M = 3 we have φ1(pM ) < 1 =

φ2(pM ) = φ3(pM ). Further, in a left neighborhood of pM equilibrium strategies would

be the solutions of the three-equation system (13), call them φ◦i(p). Let us consider

28 See also Hirata [11] (Claim 5) for a proof of a similar result.
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A3 first. As seen more exhaustively in the following section, solving this system yields

φ◦1(p) =
q
K2
K1

(p−pm)
p , φ◦2(p) = K1

K2
φ◦1(p), and φ◦3(p) =

D(p)−K1−K2
K3

+ K1
K3
φ◦1(p)

for p ∈ [P (K1 + K2), P (K1 + K3)]. Since φ◦2(P (K1 + K3)) = 1, then φ◦1(P (K1 +

K3)) = K2/K1; upon differentiation of φ◦3(p) and recalling that D(pM )−K2 −K3 +

pM
ˆ
D′(p)

˜
p=pM

= 0 andΠ∗1 = pM [D(pM )−K2−K3], we find
h
φ◦′3(p)

i
p=P (K1+K3)−

=

[D′(p)]
p=pM

2K3
< 0: a contradiction.

The event #M = 3 in the other subsets can be dismissed more easily. Under that

event, Π2(p−M ) = Z2(pM ;φ−2(pM )) = Π∗2 and Π3(p−M ) = Z3(pM ;φ−3(pM )) = Π∗3 .

These two equations contradict each other since φ2(pM ) = φ3(pM ) = 1. For example,

if the former holds, then Π3(p−M ) < Π∗3 and the latter cannot hold. Let us see how this

works in each case. Note that in C2∪C12, pM > P (K1 +K3). Hence under our working

assumption we would have Π∗2 = pmK2 = pM [1 − φ1(pM )]K2. This yields φ1(pM ) =

1 − pm/pM , in turn implying Z3(p−M ) = pM [1 − φ1(pM )]K3 = pmK3, contrary to

Proposition 11(iii.a). In C11, Π∗2 = pmK2 = Z2(p−M ) = pM [φ1(pM )(D(pM ) − K1 −
K3)+(1−φ1(pM ))K2], yielding φ1(pM ) = pM−pm

pM
K2

K−D(pM )
. By substituting this into

Z3(p−M ) = pM [1−φ1(pM )]K3 we obtain Z3(p−M ) =
pM [K1+K3−D(pM )]+pmK2

K−D(pM )
K3. Note

that
pM [K1+K3−D(pM )]+pmK2

K−D(pM )
< pm since P (K1+K3) > pM ; hence Z3(p−M ) < pmK3,

again contradicting Proposition 11(iii.a). (A similar argument applies to A2).

It remains to dismiss the event of p
(2)
M < pM in A2 ∪ A3 ∪ C11 ∪ C12 ∪ C2.

This is done by showing that otherwise Π2(p) would be greater than Π∗2 in a left

neighborhood of pM . If p
(2)
M < pM in C11 ∪ C12 ∪ C2, then Π3(p−M ) = pM [1 −

φ1(pM )]K3 = Π∗3 > pmK3, implying φ1(pM ) = 1 − Π∗3
pMK3

< 1 − pm
pM

and hence

Π2(p−M ) = pMφ1(pM ) max{0, D(pM ) − K1 − K3} + pM [1 − φ1(pM )]K2 > pmK2.

If p
(2)
M < pM in A2 ∪ A3 , then φ1(p) = 1 − pm

p in a neighborhood of pM . Con-

sequently, by charging a price in that neighborhood firm 2 would earn Π2(p) =

pφ1(p)φ3(p)[D(p) − K1 − K3] + pφ1(p)(1 − φ3(p))[D(p) − K1] + p(1 − φ1(p))K2 >

p(1− φ1(p))K2 = pmK2 = Π∗2 .

(ii) Recall that, by Proposition 11(i)-(ii), L = {1, 2, 3} and Π∗i = pmKi for each

i. Consider B1 first. If p
(j)
M < pM for some j 6= 1, then one can easily check that

Πj(p) > Π∗j for p ∈ [max{p(j)M , P (K1 +K3)}, pM ]. Turn next to B2. Here M = {1, 2, 3}
follows directly from Proposition 3(iii) and the fact that φ2(p) = φ3(p) (see Proposition

8). ut

Proof (of Theorem 1) For parts (a) and (b), see Propositions 11 and 13. For the first

claim in part (c), see Proposition 11(iii). For part (d), see Proposition (10); because

of Proposition 3(iv) gaps in S2 and S3 cannot overlap. For parts (e) and (f), see

Propositions 11 and 12. Part (g) is a consequence of Propositions 10, 11 and 12 and

Lemma 3. Hence we need just to prove the last claim in part (c). (Figure 2 may help

the reader in following the proof.)

It is easily checked that Π3α(pm) = pmK3 = Π3α(P (K1)) and, if P (K1) > p∗M ,

Π3α(p∗M ) < pmK3; furthermore,
ˆ
Π ′3α(p)

˜
p=pm

> 0.29 It follows immediately that

29 In C1, Π′3α(p)p=pm = K3, in C2∪C3, Π′3α(p)p=pm = pm
ˆ
φ′1α

˜
p=pm

[D(pm)−K1−K3]+

K3, where
ˆ
φ′1α

˜
p=pm

= − K2
pm[D(pm)−K1−K2]

.
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Fig. 2 Π3α(p) := Z3(p, φ1α(p), φ2α(p)), where pmK1 = Z1(p, φ2α(p), 0) and pmK2 =
Z2(p, φ2α(p), 0); Π3γ(p) := Z3(p, φ1γ(p), φ2γ(p)), where pmK1 = Z1(p, φ2γ(p), 1) and
pmK2 = Z2(p, φ2γ(p), 1)

Π3α(p) has an internal maximum over the range [pm,min{P (K1), p∗M}]. Thus p
(3)
m 6

arg maxΠ3α(p), otherwise Π∗3 = Π3α(p
(3)
m ) < maxΠ3α(p), while firm 3 can earn

maxΠ3α(p) by charging arg maxΠ3α(p). To rule out the event of p
(3)
m < arg maxΠ3α(p),

note that, on a right neighborhood of p
(3)
m ,Π∗i = Πi(p) = Zi(p;φ−i(p)) = Zi(p;φ−iα(p))

for i ∈ {1, 2}, where φ3α(p) = 0. Thus, taking account of Lemma 2(b), on a right neigh-

borhood of p
(3)
m , φ2(p) < φ2α(p) and φ1(p) < φ1α(p) since φ3(p) > 0, implying that

Z3(p;φ−3(p)) > Z3(p;φ−3α(p)). Hence if p
(3)
m < arg maxΠ3α(p), we get a contradic-

tion since Z3(p;φ−3α(p)) > Z3(p
(3)
m ;φ−3α(p

(3)
m )) = Π∗3 = Z3(p;φ−3(p)) on a right

neighborhood of p
(3)
m .30 ut

Two remarks are in order about the last proof. If arg maxp∈eαΠ3α(p) 6= P (K1+K3),

then [φ′3(p)]
p=p

(3)
m +

= 0 and [φ′j(p)]p=p(3)m +
= [φ′j(p)]p=p(3)m −

for j = 1, 2; whereas

if arg maxp∈eαΠ3α(p) = P (K1 + K3), then [φ′3(p)]
p=p

(3)
m −

> 0 and [φ′j(p)]p=p(3)m +
<

[φ′j(p)]p=p(3)m −
for j = 1, 2. (We omit the proof, which can be derived straightforwardly.)

Finally, when M = {1, 2}, p(3)M is easily determined once Π∗3 has been computed.

Let γ = [p
(3)
M , pM ] so that we can refer to the equilibrium strategies of firms 1 and 2

over this range as φ1γ(p) and φ2γ(p) (see Figure 2): clearly, Z2(p;φ1γ(p), 1) = Π∗2 and

Z1(p;φ2γ(p), 1) = Π∗1 . Next consider Z3(p;φ1γ(p);φ2γ(p)) on any left neighborhood

of pM . On reflection, p
(3)
M is such that Z3(p

(3)
M ;φ1γ(p

(3)
M ), φ2γ(p

(3)
M )) = Π∗3 whereas

30 One might wish to account for the event of Π3α(p) reaching its maximum more than once

in eα. Arguing as in the text, it is established that p
(3)
m = max{arg maxp∈eαΠ3α(p)}.
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Z3(p;φ1γ(p), φ2γ(p)) > Π∗3 on a left neighborhood of p
(3)
M and Z3(p;φ1γ(p), φ2γ(p)) 6

Π∗3 for p ∈ (p
(3)
M , pM ].

5 Triopoly: gaps in supports and uniqueness of equilibrium strategies

In the duopoly, concavity of the demand function is sufficient to have connected sup-

ports of equilibrium strategies, whereas, without concavity, φj(p) (some j) may be

constant over some interval α ⊂ (p
(j)
m , p

(j)
M ) (as clarified by Osborne and Pitchik, [15]).

Quite differently, under triopoly the Sj ’s need not be connected, even if the demand

function is concave. As already seen, equilibria with gaps in S2 and S3 exist when

(K1,K2,K3) ∈ D ∪ E1 ∪ E2 ∪ F , due to the degree of freedom in the determination

of φ2(p) and φ3(p) for p > P (K1). In this section, it will be seen that gaps are also

conceivable when (K1,K2,K3) ∈ A ∪ B1 ∪ B2 ∪ C1 ∪ C2 ∪ C3 ∪ E1 ∪ E2, over some

subset of [pm, P (K1)], hence independently of equilibrium indeterminateness. Consider

system

Π∗i = Zi(p;φ−i(p)), for i : p ∈ [p
(i)
m , p

(i)
M ], (14)

and denote by φi
◦(p) (each i : p ∈ [p

(i)
m , p

(i)
M ]) its solution at any p ∈ [pm, pM ]. We will

show that the φi
◦(p)’s (each i : p ∈ [p

(i)
m , p

(i)
M ]) are in fact the equilibrium strategies

(namely, the φi(p)’s) if all of them are increasing throughout [p
(i)
m , p

(i)
M ]. Furthermore,

we will see how gaps are determined in the event of φi
◦′(p) < 0 for some i and establish

uniqueness of equilibrium, whether or not gaps arise. Finally, it will be seen that

S1∪S2∪S3 = [pm, pM ]. The following section makes these results all the more relevant

by showing that gaps can actually arise in B1 and C1.

Proposition 14 (i) Let (K1,K2,K3) ∈ A∪B1 ∪B2 ∪C1 ∪C2 ∪C3 ∪E1 ∪E2. Then:

(i.a) (φ1
◦(p), φ2

◦(p), φ3
◦(p)) is unique at any p ∈ [p

(3)
m ,min{p(3)M , P (K1)}]; (i.b) if

φ1
◦(p), φ2

◦(p), and φ3
◦(p) are increasing over the range [p

(3)
m ,min{p(3)M , P (K1)}], then

φ1
◦(p), φ2

◦(p), and φ3
◦(p) are the equilibrium strategies throughout that range.

(ii) Let (K1,K2,K3) ∈ C1∪C2∪C3. Then: (ii.a) (φ1
◦(p), φ2

◦(p)) is unique at any

p ∈ [pm, p
(3)
m ] and φi

◦(p), i = 1, 2, is increasing there; (ii.b) φ1
◦(p) and φ2

◦(p) are the

equilibrium strategies throughout that range.

(iii) Let (K1,K2,K3) ∈ F . Then: (iii.a) (φ1
◦(p), φ3

◦(p)) is unique at any p ∈
[pm, P (K1)] and φi

◦(p), i = 1, 3, is increasing there; (iii.b) φ1
◦(p) and φ3

◦(p) are the

equilibrium strategies throughout that range.

(iv) Let (K1,K2,K3) ∈ A ∪ C1 ∪ C2 ∪ C3. Then: (iv.a) (φ1
◦(p), φ2

◦(p)) is unique

at any p ∈ [p
(3)
M , pM ] and φi

◦(p), i = 1, 2, is increasing there; (iv.b) φ1
◦(p) and φ2

◦(p)
are the equilibrium strategies throughout that range.

Proof (i.a) Let contrariwise (bφ◦1(p), bφ◦2(p), bφ◦3(p)) be another solution and let, with-

out loss of generality, bφ◦1(p) < φ◦1(p) at some p ∈ [p
(3)
m ,min{p(3)M , P (K1)}]. Then,

since ∂Z3/∂φ2 < 0 and ∂Z2/∂φ3 < 0 because of Lemma 2(b), bφ◦2(p) should be

greater than φ◦2(p) in order for Z3(p, bφ◦−3(p)) = Π∗3 and hence bφ◦3(p) > φ◦3(p) in

order for Z2(p, bφ◦−2(p)) = Π∗2 . Consequently, since ∂Z1/∂φj < 0 for j 6= 1 because of

Lemma 2(a), Z1(p, bφ◦−1(p)) would be less than Π∗1 : a contradiction.
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(i.b) The statement is violated if and only if there is a gap (ep,eep) ⊂ [p
(3)
m ,min{p(3)M , P (K1)}]

in Sj for some j, such that φj(eep) = φj(ep+). But then φj
◦(eep+) > φj(ep) = φj

◦(ep):
consequently, either ep or eep or both are charged with positive probability, contrary to

Proposition 5.

Parts (ii.a), (iii.a), and (iv.a) are obvious consequences of Theorem 1 and concavity

of demand function (Lemma 2). Parts (ii.b), (iii.b), and (iv.b) hold since a gap in a

single Si contradicts Proposition 3(iv) and an overlapping gap (p, p) in both supports

contradicts Proposition 5, as in the proof of part (i.b). ut

In light of these results, gaps may only occur over the range [p
(3)
m ,min{p(3)M , P (K1)}]

and only when φj
◦′(p) < 0 for some j. However, gaps have not been characterized as

yet. Note that, because of Proposition 3(iv), either gaps do not overlap or they do in all

three supports. In order to rule out the latter event, we establish the following lemma.

Lemma 4. Let pm < P (K1). (i) Z1(p;φ2, φ3) is concave and increasing in p

throughout [pm, pM ].

(ii) If pm < P (K1+K3), then Z2(p;φ1, φ3) is concave in p over ranges [pm, P (K1+

K3)] and [P (K1 +K3), P (K1)], but locally convex at P (K1 +K3) if φ3 > 0; otherwise

it is concave in p throughout [ pm, P (K1)].

(iii) If pm < P (K1 +K2), Z3(p;φ1, φ2) is concave in p over ranges [pm, P (K1 +

K2)] and [P (K1 + K2), P (K1)], but locally convex at P (K1 + K2); otherwise it is

concave over range (pm, P (K1)].

(iv) In ranges where Zi(p;φ1, φj), i, j = 2, 3, is concave in p but not strictly con-

cave, it is increasing in p.

Proof (i) For each φ2 and φ3, function Z1(p;φ2, φ3) is a weighted arithmetic average

of functions of p which are concave and increasing over the range [pm, pM ].

(ii)-(iv) See Lemma 1(i)-(ii). ut

Proposition 15 (i) Let (K1,K2,K3) ∈ A ∪B1 ∪B2 ∪ C1 ∪ C2 ∪ C3 ∪ E1 ∪ E2.

(i.a) Assume that some interval (ep,eep) ⊂ [p
(3)
m ,min{p(3)M , P (K1)}] is a gap in Si

while belonging to Sj and Sr. Then φi
◦(p) > φi(p). As a consequence φi

◦(p) is de-

creasing in a left neighborhood of eep.

(i.b) No subset of range [p
(3)
m ,min{p(3)M , P (K1)}] is a gap in all supports.

(ii) S1 ∪ S2 ∪ S3 = [pm, pM ], wherever (K1,K2,K3) falls in the region of mixed

strategy equilibria.

Proof (i.a) In (ep,eep) we have

Π∗i > Zi(p, φj(p), φr(p)) (15)

Π∗j = Zj(p, φi(p), φr(p)) (16)

Π∗r = Zr(p, φi(p), φj(p)). (17)

Because of inequality (15), either φj(p) > φj
◦(p) or φr(p) > φr

◦(p), or both. Assume

φj(p) > φj
◦(p); then equation (17) implies φi(p) < φi

◦(p). Thus φi
◦(p) is decreasing

in a left neighborhood of eep since it must be φi(eep+) = φi(eep). Note that then equation

(16) implies φr(p) > φr
◦(p).
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(i.b) Arguing ab absurdo, let (ep,eep) ⊂ [p
(3)
m ,min{p(3)M , P (K1)}] be the largest interval

constituting a gap in S1, S2, and S3. It must first be noted that the gap in S1 must

extend on the left of ep. In fact, if ep ∈ S1 such that Π∗1 = Π1(ep), we would have

Π1(p) > Π∗1 at p slightly higher than ep - a contradiction - since dZ1/dp = ∂Z1/∂p

on a right neighborhood of ep and, by Lemma 4(i), ∂Z1/∂p > 0. To avoid a similar

contradiction for firms 2 and 3, we must have ∂Z3/∂p 6 0 and ∂Z3/∂p 6 0 in a right

neighborhood of ep. Now this requirement is violated if K1 +K3 < D(pm) and ep falls

in any subset of [pm, P (K1 +K3)]. Consider first subset [pm, P (K1 +K2)] (of course,

in the assumption that K1 +K2 < D(pm)). Here

Z2(p;φ1, φ3) = [pφ1φ3(D(p)−K1 −K3) + (1− φ1φ3)]K2.

Then

∂Z2
∂p = K2 + φ1φ3(D(p)−K + pD′(p)) >

> K2 +
P (K1+K2)−pm
P (K1+K2)

K2
K3

(D(p)−K + pD′(p)) >

> K2{1 +
P (K1+K2)−pm
P (K1+K2)

1
K3

[−K3 + P (K1 +K2)D′(p)p=P (K1+K2)]} =

= K2
K3P (K1+K2)

{pmK3 + P (K1 +K2)D′(p)p=P (K1+K2)[P (K1 +K2)− p
m

]} >
K2

K3P (K1+K2)
[Π∗1 − (K1 −K3)P (K1 +K2)]> 0.

The equalities derive from simple manipulation. The first inequality follows from the

requirement that Z2(p, φ1, φ3) = pmK2 on a left neighborhood of ep, implying φ1φ3 =
p−pm
p

K2
K−D(p)

as we are stipulating that ep ∈ [pm, P (K1 +K2)]: thus φ1φ3 is increasing

in p and hence not higher than
P (K1+K2)−pm
P (K1+K2)

K2
K3

. The second inequality holds since

(D(p)−K+pD′(p)) is a decreasing function. The third inequality follows since pD′(p)+

(D(p) − K2 −K3) > 0 throughout [pm, pM ); the last inequality follows since Π∗1 >

p[D(p)−K2 −K3] throughout [pm, pM ]. We similarly rule out the event of ep ∈ [P (K1+

K2), P (K1 + K3)] (when letting K1 + K2 < D(pm)) or ep ∈ [pm, P (K1 + K3)] (when

letting K1 +K2 > D(pm)), since ∂Z3/∂p = K3(1− φ1φ2) > 0 over those ranges.

A contradiction of a different type is reached by conceding ep ∈ (P (K1+K3), P (K1))

or - if K1 + K3 > D(pm) - ep ∈ (pm, P (K1)). If ep is in any such range, then also eep
is, and either eep ∈ S2 or eep ∈ S3, or both. Suppose eep ∈ S3. From the requirement that

∂Z3/∂p = 0 at p = ep (otherwise an immediate contradiction obtains) it follows that

∂Z3/∂p < 0 at p = eep since Z3 is strictly concave in p when φ2 = φ2(ep) = φ2(eep) ∈ (0, 1)

and φ1 = φ1(ep) = φ1(eep) > 0. But this violates the requirement that dZ3/dp = 0 on

a right neighborhood of eep. A similar contradiction arises if eep ∈ S2. Hence no interval

(ep,eep) ⊂ [p
(3)
m ,min{p(3)M , P (K1)}] may be a gap in all supports.

(ii) It follows from part (i.b) and Propositions 12 (gaps in S2 and S3 cannot overlap

for p > P (K1)) and 14. ut

We finally see how equilibrium strategies are determined in the event of φ◦′i(p) < 0

for some i.

Proposition 16 Let (K1,K2,K3) ∈ A ∪ B1 ∪ B2 ∪ C1 ∪ C2 ∪ C3 ∪ E1 ∪ E2, let

N = {i, j, r}, and suppose φ◦i(p) is decreasing on a left neighborhood of eep > p
(3)
m ,

where [eep,min{p(3)M , P (K1)}] is the largest (possibly degenerate) left neighborhood of

min{p(3)M , P (K1)} where φ◦i(p), φ◦j(p), and φ◦r(p) are increasing. Denote by ep the
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largest solution of φi
◦(p) = φi

◦(eep) in the range (p
(3)
m ,eep). Then there is a unique equi-

librium, namely:

(a) Equilibrium strategies are φ◦i(p), φ
◦
j(p), and φ◦r(p) over [eep,min{p(3)M , P (K1)}],

Sj and Sr are both connected throughout [ep,min{p(3)M , P (K1)}] while (ep,eep) is a gap in

Si.

(b) If φ◦i(p), φ
◦
j(p), and φ◦r(p) are increasing all over (p

(3)
m , ep), then they are the

equilibrium strategies throughout this range. Otherwise there is a gap to be determined

as in (a). More precisely, suppose there is eeq, such that [eeq, ep] is the largest (possibly

degenerate) left neighborhood of ep where φ◦i(p), φ◦j(p), and φ◦r(p) are increasing, but

φ◦j(p) is decreasing on the left of eeq; let eq be the largest solution of φj
◦(p) = φj

◦(eeq)
in the range (p

(3)
m ,eeq); then equilibrium strategies are φ◦i(p), φ

◦
j(p), and φ◦r(p) over

[eeq, ep], Si and Sr are both connected throughout (eq, ep] while (eq,eeq) is a gap in Sj .

(c) If the determination of equilibrium is not yet complete after step (b), the above

procedure is repeated up to the stage in which φ◦i(p), φ
◦
j(p), and φ◦r(p) are increas-

ing on the right neighborhood of p
(3)
m still left to analyze: φ◦i, φ

◦
j , and φ◦r are the

equilibrium strategies over that range.

Proof By construction, each firm gets its equilibrium payoff at any p ∈ [eep,min{p(3)M , P (K1)}]
and the same holds for j and r at any p ∈ (ep,eep), where Zj(p, φi

◦(ep), φr(p)) = Π∗j
and Zr(p, φi

◦(ep), φj(p)) = Π∗r . Further, it does not pay for firm i to charge any

p ∈ (ep,eep): Zi(p, φj(p), φr(p)) < Π∗i = Zi(p, φj
◦(p), φr

◦(p)) since φj(p) > φ◦j(p) and

φr(p) > φ◦r(p) throughout (ep,eep). One can argue likewise while moving on the left of ep
and up to p

(3)
m : thus the strategy profile under consideration constitutes an equilibrium.

To check uniqueness, we begin by noting that, arguing as in the proof of Proposition

14(i.b), none of φi(p), φj(p) and φr(p) can be constant over any interval in [eep, p(3)M ]. By

the same token we can dismiss any strategy profile with any subset of [ep, p(3)M ] other

than (ep,eep) constituting a gap in Si. Nor can there be equilibria with a gap (p, p) in Sj

such that p ∈ (ep,eep). This would restrict the gap in Si to (q,eep), where q ∈ [p,eep), so that

φi(eep) = φ◦i(eep) = φ◦i(q), contrary to the fact that φ◦i(q) > φ◦i(eep). ut

The results of this section allow us to supplement Theorem 1 with a uniqueness

result.

Theorem 2. In A, B1 ∪ B2, and C1 ∪ C2 ∪ C3, the equilibrium strategies are

uniquely determined throughout [pm, pM ] ; in F and E1∪E2, the equilibrium strategies

are uniquely determined throughout [pm, P (K1)].

6 On the event of a disconnected support

Based on the results above the mixed strategy equilibrium can be computed once

the demand function and the firm capacities are fixed. To illustrate how this task is

accomplished, in this section we will determine the equilibrium for (K1,K2,K3) ∈
B1. This set is of special interest because S3 proves disconnected under well-specified

circumstances. Yet the possibility of gaps is by no means restricted to this set. This

will be proved at the end of the section by means of a numerical example yielding a
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gap in S2 for (K1,K2,K3) ∈ C1. The example also shows that range [eep, p(3)M ] may in

fact be degenerate, as acknowledged in Proposition 16.

In set B1 we partition the range [pm, pM ] into three subsets: α = [pm, P (K1+K2)),

β = [P (K1 +K2), P (K1 +K3)), and γ = [P (K1 +K3), pM ]. In α system (14) read8<:
Π∗1 = p[φ2αφ3α(D(p)−K2 −K3) + (1− φ2αφ3α)K1]

Π∗2 = p[φ1αφ3α(D(p)−K1 −K3) + (1− φ1αφ3α)K2]

Π∗3 = p[φ1αφ2α(D(p)−K1 −K2) + (1− φ1αφ2α)K3],

and the solution is

φ◦1α =

s
K2

K1

(pm − p)K3

p(D(p)−K)
, φ◦2α =

K1

K2
φ◦1α, φ

◦
3α =

K1

K3
φ◦1α. (18)

In β, system (14) read

8<:
Π∗1 = p

ˆ
φ2βφ3β(D(p)−K2 −K3) + φ2β

`
1− φ3β

´
(D(p)−K2) +

`
1− φ2β

´
K1
˜
,

Π∗2 = p[φ1βφ3β(D(p)−K1 −K3) + φ1β

`
1− φ3β

´
(D(p)−K1) +

`
1− φ1β

´
K2],

Π∗3 = p[φ1β

`
1− φ2β

´
+
`
1− φ1β

´
]K3,

and the solution is

φ◦1β =

s
K2

K1

(p− pm)

p
, φ◦2β =

K1

K2
φ1β , φ

◦
3β =

D(p)−K1 −K2

K3
+
K1

K3
φ◦1β . (19)

In γ, system (14) read8>><>>:
Π∗1 = p

ˆ
φ2γφ3γ(D(p)−K2 −K3) + pφ2γ

`
1− φ3γ

´
(D(p)−K2)

+
`
1− φ2γ

´
φ3γ(D(p)−K3) +

`
1− φ2γ

´
(1− φ3γ)K1

˜
Π∗2 = p

ˆ
φ1γ

`
1− φ3γ

´
(D(p)−K1) +

`
1− φ1γ

´
K2
˜

Π∗3 = p
ˆ
φ1γ

`
1− φ2γ

´
(D(p)−K1) +

`
1− φ1γ

´
K3
˜
,

and the solution is

φ◦1γ =

s
K2K3(p− pm)2

p2(D(p)−K1 −K2)(D(p)−K1 −K3) + (p− pm)K1p(D(p)−K1)
,

φ◦2γ(p) = 1− K3

K2
+
K3

K2
φ◦3γ

φ◦3γ =
(p− pm)K2 + pφ◦1γ(p)(D(p)−K1 −K2)

pφ◦1γ(D(p)−K1)
.

In range α, φ◦′iα(p) > 0. (If φ◦′iα(p) 6 0 for some i, then φ◦′jα(p) 6 0 for all j 6=
i, thereby violating the requirement that Π ′i(p) = 0 since Lemma 4 holds.) On the

other hand, while φ◦1α(P (K1 + K2)) < 1 and φ◦2α(P (K1 + K2)) < 1 (the latter is

checked by simple manipulation and using the fact that Π∗1 > p(D(p) − K2 − K3)

throughout [pm, pM )), we might have φ◦3α(P (K1 + K2)) > 1 (as illustrated by the

third example below), which would obviously prevent the equilibrium strategies from

coinciding with the φ◦iα(p) throughout α. In range γ, φ◦1γ(pM ) < 1 = φ◦2γ(pM ) =
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φ◦3γ(pM ) and φ◦′iγ > 0 in the interior of γ, with φ◦′3γ = φ◦′2γ = 0 at p = pM .31 As

to range β, φ◦iβ(P (K1 +K3)) < 1 for all i. This is seen almost immediately as far as

φ◦1β(p) is concerned. As to φ◦jβ(p) (j 6= 1), by simple computations it is found that

φ◦jβ(P (K1 + K3)) < 1 if and only if Π∗1 > (K1 − K2)P (K1 + K3), which certainly

holds since Π∗1 > p(D(p)−K2 −K3) throughout [pm, pM ).

In a left neighborhood of P (K1 +K3) φ◦′3β(p) might be negative. Note that

φ◦
′
3β(p) =

D′(p)
K3

+
K1

K3
φ◦
′
1β(p) =

D′(p)
K3

+
1

2

„
K2

K1

(p− pm)

p

«−1/2
K2

K3

pm
p2
.

Since φ◦′3β(p) is decreasing, φ◦′3β(p) > 0 throughout β if and only if [φ◦′3β ]p=P (K1+K3) >
0. This in turn amounts to

K2pm > −2
ˆ
D′(p)

˜
p=P (K1+K3)

× [P (K1 +K3)]2

s
K2

K1

„
1− pm

P (K1 +K3)

«
. (20)

If this inequality holds, then equilibrium strategies are actually the φ◦iβ ’s through-

out β. (Note that in this case, φ◦3α(P (K1 + K2)) < 1 since φ◦′′3β < 0 through-

out β.) If not, then, by Proposition 16, there is a gap [ep, P (K1 + K3)] in S3. Two

cases are possible according to whether φ◦3β(P (K1 + K3)) > φ◦3β(P (K1 + K2)) or

φ◦3β(P (K1 +K3)) < φ◦3β(P (K1 +K2)). In the former case ep is such that φ◦3β(ep) =

φ◦3β(P (K1 + K3)); in the latter it is such that φ◦3α(ep) = φ◦3β(P (K1 + K3)). In

the former case, the equilibrium strategies are provided by equations (18) through-

out α and by equations (19) over subset [P (K1 + K2), ep] of β, the remaining sub-

set [ep, P (K1 + K3)] being the gap in S3: here φ3(p) = φ◦3β(P (K1 + K3)), φ1(p) =
Π∗2−pK2

p[D(p)−K1−K2−φ3K3]
and φ2(p) =

Π∗1−pK1
p[D(p)−K1−K2−φ3K3]

. In the latter case, equa-

tions (18) provide the equilibrium strategies over subset [pm, ep] of α and φ3(p) =

φ◦3β(P (K1 + K3)) throughout range [ep, P (K1 + K3)], the gap in S3. Now φ1(p) =
Π∗2−pK2

pφ3(p)(D(p)−K)
and φ2(p) =

Π∗1−pK1
pφ3(p)(D(p)−K)

over subset [ep, P (K1 + K2)] of the gap

and φ1(p) =
Π∗2−pK2

p[D(p)−K1−K2−φ3(p)K3]
and φ2(p) =

Π∗1−pK1
p[D(p)−K1−K2−φ3(p)K3]

over the

remaining subset [P (K1 +K2), P (K1 +K3)].

We provide one example for each of the three cases which can arise for (K1,K2,K3) ∈
B1: no gap in any Si, a gap in S3 with ep ∈ β, and a gap in S3 with ep ∈ α.

First example: D(p) = 10 − p, K1 = 5.98, K2 = 1, and K3 = 0.97. Then pM =

4.015, pm = 4.0152/5.98, and Π∗i = pmKi for each i. Condition (20) is met, hence

Si = [pm, pM ] for all i.

Second example: D(p) = 10 − p,K1 = 23/4, K2 = 3, K3 = 2. Then pM = 2.5,

pm = 25/23, and Π∗i = Π∗i = pmKi for each i. Condition (20) is violated, hence φ3 is

constant over range [ep, P (K1 +K3)], where P (K1 +K3) = 2.25. It is easily found thatep ≈ 1.57358 > P (K1 +K2) = 1.25.

Third example: D(p) = 10− p, K1 = 5.45, K2 = 3, and K3 = 2.2. Then pM = 2.4,

pm = 2.42/5.45, and Π∗i = pmKi for each i. Condition (20) is violated, hence φ3 is

constant over range [ep, P (K1 + K3)], where P (K1 + K3) = 2.35. It is easily found

that ep ≈ 1.48165 < P (K1 + K2) = 1.55. In fact, one can also easily check that

φ◦3αP (K1 +K2) ≈ 1.036.

31 On all this, see the appendix in [7].
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Finally, to get further insights on gaps we worked out an example for set C1. Let

D(p) = 20 − p and (K1,K1,K1) = (15, 4, 0.5). Then, pM = 7.75, Π∗1 = 60.0625,

pm = 4.00416, and Π∗2 = 16.016. Note that (15, 4, 0.5) ∈ C1 since P (K1 + K2) =

1 < pm = 4.00416 < P (K1 + K3) = 4.5. We partition [pm, pM ] into α = [pm, p
(3)
m ),

β = [p
(3)
m , p

(3)
M ), and γ = [p

(3)
M , pM ]. In α, φ1α =

4(4.00416−p)
p(1−p) and φ2α =

15(4.00416−p)
p(1−p) .

One can easily check that arg maxp∈[pm,P (K1)] Z3(p, φ1α, φ2α) = P (K1 + K3), hence

p
(3)
m = 4.5 and Π∗3 = Π3(p

(3)
m ) ≈ 2.11620. To find p

(3)
M , note that, in γ, φ1γ = 1 −

(pm/p) = 1− (4.00416/p) and φ2γ =
p(D(p)−K3)−Π∗1

pK3
= 2

p(19.5−p)−60.0625
p . Then the

equation Z3(p, φ1γ , φ2γ) = Π∗3 over range [pm, P (K1)] yields p
(3)
M ≈ 4.66038. Turning

to range β, denote the solutions to system (14) by φ◦1β(p), φ◦2β(p), and φ◦3β(p).32

One can check that
h
φ◦′2β(p)

i
p=p

(3)
M

< 0. Therefore, there is a gap [ep,eep] in S2, with

eep = p
(3)
M . As to ep, this is found by solving φ◦2β(p) = φ◦2β(eep) = .487931 over (p

(3)
m , p

(3)
M ),

which yields ep ≈ 4.57316. Further, one can check that φ◦1β(p), φ◦2β(p), and φ◦3β(p)

are all increasing throughout [p
(3)
m , ep], so there are no further gaps. To sum up: S1 =

[4.00416, 7.75], S2 = [4.00416, 4.57316] ∪ [4.66038, 7.75], and S3 = [4.5, 4.66038].

7 Concluding remarks

In this paper we extended the analysis of price competition among capacity-constrained

sellers beyond the duopoly and symmetric oligopoly cases. We first derived some general

and in a sense obvious results on the pure strategy equilibrium under oligopoly, and

then turned to mixed strategy equilibrium under oligopoly. We proved - among other

results - that the minimum of the support of the equilibrium strategy is determined

for the largest firm as in the duopoly (a similar result was recently provided for the

maximum) and that also the equilibrium profit of the second-largest firm is determined

as in the duopoly (a similar result was known for the largest firm). We have also shown

that there are circumstances where equilibrium strategies are not fully determined for

some firms and have found the single equation then constraining those strategies.

It emerged in the course of our investigation that mixed strategy equilibria might

look quite different depending on firms’ capacities: supports of the equilibrium strate-

gies may or may not coincide across all firms, the equilibrium need not be fully deter-

mined as far as the firms other than the largest are concerned, and equilibrium payoffs

may or may not be proportional to capacities. Thus a complete characterization of

mixed strategy equilibrium requires a taxonomy, and we provided it for triopoly. We

partitioned the region of the capacity space where the equilibrium is mixed into sev-

eral subregions according to the set of properties of the equilibrium specific to each

subregion. Another novel feature - in the context of concave demand, constant and

identical unit cost and efficient rationing - revealed by our analysis is the possibility of

the support of an equilibrium strategy being disconnected, and we showed how gaps

are actually determined in that event. Having made the taxonomy of mixed strategy

equilibria - in terms of the minima and maxima of the supports - having determined the

equilibrium payoffs of the firms and the degree of determinateness of the equilibrium,

32 System (14) lead to a second degree algebraic equation, only one of the solutions for
φ◦2β(p) being nonnegative.
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and having seen how any gap is determined, computing the mixed strategy equilibrium

is an easy task, as exemplified in Section 6.
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